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Abstract

In this work, we primarily present spectroscopic ellipsometry (SE) study on Pr,CuO,4 (PCO) thin films, a
parent compound of electron-doped cuprate superconductors. The c-aixs orientation films with various
superconducting transition temperature T, were prepared by a chemical method, which are single
phase and good crystallinity verified by x-ray diffraction. The imaginary part of dielectric function (¢;) of
PCO was investigated by SE using a four-layer optical model in the photon energy range from 1.55 to
4.13 eV. Through fitting the second derivative spectra of ; via critical point model, we find that the
charge-transfer gap exists in PCO system and, more importantly, this gap has a negative relationship
with T,. This viewpoint demonstrates that the charge-transfer gap would merge together with the
electrons doping in PCO and opens a door to understand the nature of cuprate superconductors.

1. Introduction

The materials with the formula of RE,CuQO, (RE=rare earth ions) are the parent compounds of cuprate high transition
temperature (high-T,) superconductors. It is commonly accepted that superconductivity in parent compounds
emerges after doping holes to T-phase with the Cu—O octahedra (formed by six oxygen atoms surrounding one copper
atom) or doping electrons to T’-phase with the Cu—O square (formed by four oxygen atoms surrounding one copper
atom), respectively [ 1]. For T'-phase, cation substitution has been long considered as the only way to prepare electron-
doped superconductors. However, in 2008, Matsumoto et al reported that the superconductivity in parent compounds
of electron-doped cuprates was achieved without any cation substitution [2]. This discovery may redraw the phase
diagram and pave a way for uncovering the mechanism of high-T superconductors.

The parent compounds of cuprates are believed to belong to a class of materials known as charge-transfer
insulators (or Mott insulators) [3]. The materials, which are predicted to be metallic by band theory, are actually
insulators due to the Coulomb repulsion [4]. Cu-d,:_: orbital level is split effectively into the upper and lower
Hubbard bands by a correlation energy U. When O-2p band locates between U, the gap of O-2p band to upper
Hubbard band is indicated to charge-transfer gap [5]. In 2002, Armitage et al revealed the charge-transfer band
for the first time by Angle-Resolved Photoemission Spectroscopy [4]. However, how the charge-transfer gap or
band change with doping electrons in parent compounds with superconductivity remain actively discussed.

Optical measurements can offer not only the low-lying intraband transition, but also the interband
transitions from occupied to unoccupied states, thus it has been become a powerful tool to research the charge-
transfer gap. In 2006, Wang et al demonatrated that the chemical potential moves into the conduction band as
the Nd, (Ce,CuO, (0 < x < 0.20) single crystal is doped by electrons by optical reflectivity [6]. In 2010, Pisarev
et al invistigated the complex optical dielectric function (¢ = ¢, + i¢;) in several kinds of parent compounds of
electron-doped cuprates and obtained the electric-dipole-allowed charge-transfer gap values by spectroscopic
ellipsometry (SE) method [7]. However, the samples in previous expriments are not focus on the parent
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compounds with superconductivity, which maylead to the fact that the conclusions are indirect and incomplete
in somewhat. Moreover, as a nondestructive and accurate optical method, SE can measure the amplitude and
phase information simultaneously [8] and has become a suitable way to determine the complex dielectric
function for kinds of materials [9-12]. Therefore, in this work, the charge-transfer gap of parent compounds
Pr,CuO,4 (PCO) with superconductivity are studied by SE, which can provide the direct evidence for that how
the charge-transfer gap vary with doping electrons in parent compound PCO system.

PCO thin films with different T}, were synthesized by polymer assisted deposition (PAD) method. X-ray
diffraction (XRD) was used to characterize lattice struture and c-aixs lattice constant, and atomic force microscope
(AFM) offers the roughness layer information for SE data analysis. SE was employed to investigate PCO samples’
dielectric functions, and critical point (CP) model was used to obtain the charge-transfer gap value for PCO thin films
through fitting the second derivative spectra of ;. We find the gap values decrease as the T increases. This
phenomenon declears that the band structure would move and merge together as the electrons doping in PCO system.
Therefore, we provide a possible way to uncover the mechanism of the superconductivity in parent compounds.

2. Experimental method

2.1. Materials

PCO thin films were grown on (00])-orientation SrTiO3 (STO) substrates by PAD method. In the precursor
polymer solution, Pr and Cu nitrates offer the metal ion and were mixed at a certain stoichiometric. The organic
polymer compounds are from polyethylenimine and ethylenediaminetetraacetic acid. Then, the precursor
solution was spin coated on STO substrates. To decompose the polymer, the films were heated from room
temperature to 550 °C in the air. The uncrystallized samples were crystallized and sintered at 850 °C under

200 Pa oxygen pressure in a tubular furnace for one hour. In the last, the PCO thin films were annealed about

1 Paat various temperature. The more details about the film growth were documented in [13].

2.2.Methods

Resistivity was measured by a standard four-probe method using physical property measurement system
(PPMS). The crystallization and surface morphology were characterized by XRD (Rigaku SmartLab9KW) and
AFM (NaioAFM), repectively. SE (Sopra GES-5) was utilized to explore dielectric function in the photon energy
range from 1.55 to 4.13 eV at 75° incidence. XRD, AFM and SE were all tested at room temperature (300 K).
Samples with T,y = 22.7 K (named as SC22), 15.3 K (SC15) and a non-superconduting (NSC) were carried out.

3. Experimental results and discussion

3.1. Temperature dependence of resistivity measurement

Figures 1(a)—(c) show the temperature dependence of the resistivity for SC22, SC15 and NSC. For figures 1(a)
and (b), the values of resistivity decrease monotonically with decreasing temperature down to T, = 22 Kand
15 K, and the width of the superconducting transition is 1.67 K and 2.92 K for SC22 and SC15, respectively.
However, the resistivity of NSC sample increases monotonically with decreasing temperature and shows the
insulator property. RRR is defined as the residual resistance ratio by R(300 K)/R(30 K), which equals to 8.22,
3.16 and 0.43 for SC22, SC15 and NSC, respectively. The values of RRR are in agreement with He et al work on
tunneling study of PCO films [14]. Due to the fact that the amount of impurities and crystallographic defects can
make the value of RRR decrease, thus, non-superconducting sample has more disorder than superconducting
samples. In electron-doped cuprates, these defects mainly come from the apical oxygen and in-plane oxygen
vacancies induced by under- or over-annealing process [14-16].

3.2. Crystal structure

To characterize the structure of PCO thin films, /260 was measured, as seen in figure 2. The card number for
XRD is PDF#49-1891. All PCO peaks on STO (00 1) are sharp, indicating that the films show a single phase and
c-axis orientation with good crystallinity. (006) diffraction peaks shifted to lower angle from SC22 to NSC stems
from variation of c-axis lattice constants which could be calculated by Bragg’s formula. The results show that the
lattice constants relating with apical oxygen contents are 12.199 A, 12.209 A and 12.235 A for SC22, SC15 and
NSG, respectively, which is similar to Matsumoto et al work [17].

3.3. Surface topography
AFM is a sufficient method to analyze the surface morphology and roughness of thin films, and the 3D graphs of
SC22,SC15 and NSC are shown in figures 3(a)—(c). The testing area is 1 pmx 1 pm and the size of swells
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Figure 1. Temperature dependence of resistivity for PCO thin films with various T. The number in the sample name presents the
superconducting transition temperature.
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Figure 2. XRD patterns for SC22, SC15 and NSC of PCO thin films synthesized on (001)-oriented STO substrate. 2 testing range is
40-75 degree. The data are shifted vertically for clarity.

decreases as superconducting transition temperature increase. Based on this measuring results, roughness layer
should be added in the SE optical model owning to surface sensitivity.

3.4. Spectroscopic ellipsometry
In SE experiment, the relevant measured quantities are tanW and cosA which describe the change of polarization
state upon reflection, called complex reflectance ratio p:

— X tan We' (1)
Xr

p
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Figure 3. AFM 3D graphs of SC22, SC15 and NSC for (a), (b) and (c), respectively. (d) is the optical model for SE analysis.

where x; and x, are the incident and reflected light polarization states, respectively [ 18]. Figure 4 exhibits the
experimental (grey solid lines) and simulated (dot lines) results of tan¥ and cosA for PCO thin films. Because SE is a
surface sensitive technique, a four-layer optical structure should be built according to AFM results, that is air/surface
roughness/PCO/STO-substrate (see figure 3(d)). We consider air as the first layer. Surface roughness as the second
layer is modeled by Bruggeman effective-medium approximation with a mixture of the material (50%) and voids
(50%), and the thickness of roughness is offered by AFM. PCO as the third layer is described by Drude and two Lorentz
oscillators dispersion. Because equation (1) is a nonlinear transcendental equation, inversion method is commonly
taken into account to treat after measurement data acquisition [19]. Thus, an evaluation function should be added to
determine the goodness of the optical model, and usually defined via the lowest mean squared error (MSE) [20]:

n

MSE = ﬁzl [(tan ¥, — tan W{ )% + (cos Al — cos AL )] ®)
iz

where n is the number of measured ¥ and A, m is the number of fit parameters and, cal and exp represent to

theoretically calculated data and experimentally measured data, respectively. Through fitting the parameters of

Drude and Lorentz dispersion laws, a favorable agreement between simulation and experiment was obtained

and showed in figure 4, and the relatively small MSE values are listed in table 1.

Finally, the imaginary part of dielectric functions (¢;) of PCO are extracted from the optical model as shown
in figures 5(a)—(c), respectively. We find that the Drude contribution remarked by diagonal lines gradually
decreases as T decreasing, indicating that metal property of PCO decreases in room temperature.

When the dielectric functions are extracted by mathematical inversion, the band structures of material can
be evaluated by a CP analysis which is performed by fitting second derivative spectra of (E) since it becomes zero
in aregion where the dielectric function varies smoothly [21]. The equations are expressed as follows [22]:

dz(Eze) nn — l)Amei%n(E _ ECP 4 il"m)n—z n=0
dE? - AmeiWM(E — Ep+ in,) 2 n=0

3

In CP analysis, (A, Ep, I, ¢) are fitted as analysis parameters, where represent the amplitude parameter, energy of
threshold, broadening and excitonic angle, respectively. In our work, we choosen = 1/2 and €, and &; were
simultaneously fitted whereas. The calculated and simulated spectra are exhibited in figures 5(d)—(f) for SC22, SC15
and NSC of PCO samples. The obtained E,, and fitting parameters derived from the CP model are listed in table 2.

3.5.Band gap of PCO
From table 2, the E,, values are 1.87, 2.00 and 2.14 eV for SC22, SC15 and NSC, respectively. As a possibility, one may
suspect that the gap results from the crystal field d-d transitions between 3d levels split by the crystal field in the photon
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Figure 4. Experimental (grey solid lines) and simulated (dots) data of tan(¥) and cos(A) for SC22 (a), SC15 (b), NSC (c).
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Figure 5. Solid lines represent the total €; and the diagonal lines are the Drude contribution dependence on photon energy for SC22
(), SC15 (b), NSC (c) of PCO thin films. (d), () and (f) are the fitting results to d?(E%) /dE? from CP analysis for SC22, SC15 and
NSC of PCO samples. Open circles represent numerically calculated data and fitted data are plotted using solid lines.
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Table 1. MSE values.

sample

SC22 SC15 NSC

MSE (10~

4 4,68 6.49 6.43
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Figure 6. the negative relationship between transition gap and superconducting transition temperature T.

Table 2. the parameters of the standard critical point model.

Sample A Ep (eV) T'n(EeV) ©m (deg.)
SC22 0.0029 1.8794 0.1784 126.1060
SC15 0.0120 2.006 0.1935 137.2139
NSC 0.0243 2.1476 0.3917 278.2671

energy of 1.4-2.4 eV. However, the forbidden d-d transitions are too weak to be detected in ellipsometry because it is
sensitive to strong transitions [7]. In other research, it has been reported that the gap can be attributed to interband
transition in high energy range (visible region) [1]. Thus, the behavior of intense transition could be assigned to charge-
transfer gap, which has been studied by optical measurement [5-7, 23]. As mentioned above, the charge-transfer gap
represents the transition between O-2p band to upper Hubbard band which is formed by the Cu d>_2-orbital band
split because of the strong on-site coulomb repulsion effect [3, 24, 25]. As early as 1990, Tokura et al pointed out the
charge-transfer gap exists positive correlation with the number of apical oxygens [23]. In our work, we find that
superconducting transition temperature has negative correlation with the charge-transfer gap for PCO, which is
consistent with Wang et al, see figure 6. Uncovering this issue may plays a significant role to understand parent
compounds.

To disclose this phenomenon, apical oxygen contents should be considered because the apical oxygens play a
strong scattering center role in electron-doped cuprate superconductors [26]. As mentioned in XRD results, the c-
axis lattice constants are 12.199 A, 12.209 A and 12.235 A for SC22, SC15 and NSC. Very recently, Wei et al utilized
electrical transport measurement to explore the intrinsic electronic state of PCO and declared that removing
oxygens is equal to introduce electrons, which is similar to dope Ce into system [13]. Therefore, according to the c-
axis lattice constants, it is evidential to view different T, as different doping electrons concentration in this work.

The reason why the superconducting transition temperature has negative correlation with the charge-
transfer gap for PCO can be looked at the electronic states of the Cu-O planes which control the physics of
cuprate high- T, superconductors. On the one hand, the introduced electrons in PCO occupy the states of Cu-3d
level, which equals to plus an effective potential to O-2p level. On the other hand, the effect of electrostatic
screening increases as the electrons increase, which leads to the on-site Coulomb interaction decreases among
Cu-3delectrons [27]. Therefore, the experimental phenomenon can be stemmed from the raising of O-2p level
and declining of upper Hubbard band, indicating that the O-2p level and upper Hubbard band would be merged
together as doping electrons into PCO. This scenario is clearer to directly explore the relationship of charge-
transfer gap with the parent compound PCO with different T .

4. Conclusions

In summary, SE technique, as an accurate and non-destructive optical detection method, allows us to explore the
charge-transfer gap value for the parent compound of PCO thin films with various T . More importantly, we find
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that the charge-transfer gap has a negative correlation with T. This phenomenon is related to the fact that O-2p
band moves toward the upper Hubbard band due to electrons doping into PCO system. In this case, we firstly show
this result and directly provide a new insight for understand the nature of the cuprate high-T, superconductors.
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