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Abstract
Critical current density (Jc) is one of the major limiting factors for high-field applications of iron-
based superconductors. Here, we report that Mn ions are successfully incorporated into nontoxic
superconducting (Li,Fe)OHFeSe films. Remarkably, the Jc is significantly enhanced from 0.03 to
0.32MA cm−2 under 33 T, and the vortex pinning force density monotonically increases up to
106 GNm−3, which is the highest record so far among all iron-based superconductors. Our
results demonstrate that Mn incorporation is an effective method to optimize the performance of
(Li,Fe)OHFeSe films, offering a promising candidate for high-field applications.

Keywords: iron-based superconductors, critical current density, high field transport, (Li, Fe)
OHFeSe film

(Some figures may appear in colour only in the online journal)

Introduction

Critical current density, the maximal ability of superconductors
to carry current without dissipation, is a crucial factor for high-
field applications [1, 2]. Among all superconductors, the record
Jc value is held so far by the copper oxide superconductors, but
their practical application is hampered by a few obstacles [2]
such as high anisotropy, a small critical grain boundary angle
(θc), and a high production cost. On the other hand, iron-based
superconductors have moderate anisotropy, a high irreversibility

field (Hirr), and θc, making them more promising for high-field
applications [2–10]. There are still drawbacks for the high-field
applications of iron-based superconductors. For example, the
toxic element arsenic in iron pnictides limits their application
although their transition temperature (Tc) and Jc are relatively
high [2–5, 9]. Therefore, it further research should aim to find
nontoxic iron-based superconductors with a comparable or even
higher Jc.

The nontoxic newly discovered superconductor
(Li,Fe)OHFeSe (FeSe-11111) [11], with an optimal Tc of
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42 K and a self-field Jc of 0.5 MA cm−2 at 20 K under
ambient pressure [12], turns out to be a good candidate.
However, the vortex pinning potential of FeSe-11111 is
relatively low due to the large layer distance [13], leading to
the broadening of resistive transition under a magnetic field
[14, 15]. This calls for further efforts at improving the vortex
pinning ability of FeSe-11111, for instance by embedding
extra vortex pinning defects [16–19]. Recently, elemental Mn
has been incorporated into FeSe-11111 single crystals without
obvious detriment to its Tc [20], which may provide an
effective candidate. Moreover, iron-based superconductors in
the form of films usually present a higher Jc than that of bulk
samples [6, 8]. Therefore, it is worth introducing transition
metal ions into FeSe-11111 crystalline superconducting films
for further optimization of their high-field performance.

In this letter, we successfully introduced Mn ions into a
superconducting FeSe-11111 film synthesized through the so-
called matrix-assisted hydrothermal epitaxy (MHE) method
[12]. A significant enhancement of Jc was observed in FeSe-
11111 films by Mn doping, increasing it tenfold from 0.03 to
0.32MA cm−2 under 33 T at 5 K. Remarkably, the vortex
pinning force density (Fp) of Mn-doped films monotonically
increases to 106 GNm−3. To the best of our knowledge, this is
the highest record so far among all iron-based superconducting
systems. By analyzing Fp versus magnetic fields, we find the
apparent enhancement of Jc in the Mn-doped FeSe-11111 film
stems from the extra pinning centers induced by Mn doping.

Experiments

The pure and Mn-doped FeSe-11111 films were synthesized
via the MHE method that we developed [12]. The x-ray dif-
fraction (XRD) experiments were carried out on a 9 kW
Rigaku SmartLab x-ray diffractometer. The scanning electron
microscope (SEM) and energy dispersive x-ray (EDX)
spectroscopy measurements were performed on a Hitachi
SU5000. The electron energy loss spectroscopy (EELS) data
were acquired using a transmission electron microscope
(ARM200F, JEOL Inc.) equipped with a Gatan Quantum ER
965 imaging filter. Electrical transport measurements within
9 T were collected with the standard four-probe method on a
Quantum Design PPMS-9 system. The values of Jc were
obtained using the criteria of 1 μV on I–V curves and the
bridge parameters were characterized by SEM. The high-field
experiments up to 33 T were performed on the Steady High
Magnetic Field Facilities, High Magnetic Field Laboratory,
Chinese Academy of Sciences.

Results and discussion

Characterization of crystal structure and elemental Mn

Figure 1(a) shows the XRD patterns of Mn-doped (top) and
Mn-free (bottom) FeSe-11111 films. There are no detectable
impurity phases in the Mn-doped system. Moreover, both of

them exhibit a single preferred orientation of (001) and the
peaks of LaAlO3 substrates are marked with LAO. The cal-
culated c-axis length decreases from 9.33 Å of the Mn-free
film to 9.30 Å of the Mn-doped film, consistent with the result
from single crystals [21]. Although the full width at half
maximum (FWHM) of the rocking curve for the (006)
reflection expands from 0.15° to 0.38° due to the presence of
Mn ions, it is still smaller than most of other iron-based
superconductor films [22–24], suggesting high crystalline
quality. To verify the incorporation of elemental Mn, all the

Figure 1. (a) XRD patterns of Mn-doped and Mn-free super-
conducting FeSe-11111 films, respectively. (b) SEM image and
corresponding EDX element mapping of Mn, Fe and Se on the Mn-
doped film. (c) The EELS data of Mn-doped FeSe-11111 films.
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Mn-doped films were checked by EDX spectroscopy or
EELS. One of the in-plane SEM images and the corresp-
onding EDX mapping of Mn-doped films are shown in
figure 1(b), which displays smooth morphology and the uni-
form distribution of Mn, Fe, and Se elements. The atomic
ratio of Mn:Se was determined to be 0.12 by EDX
spectroscopy. Moreover, one typical EELS pattern of Mn-
doped films is shown in figure 1(c). The presence of L3.2

edges for Mn and Fe indicates that Mn ions are incorporated
into the lattice of FeSe-11111 films, not left as impurities,
which is consistent with the case of Mn-doped FeSe-11111
single crystals [21]. Because of the small difference in ionic
sizes for Mn and Fe, it is expected that the incorporated Mn
ions substitute for Fe ions at the crystallographic tetrahedral
sites. Now that the homogeneous incorporation of Mn ions
has been confirmed in the Mn-doped films, we can make a
comparative study on the electrical transport properties
between Mn-doped and Mn-free FeSe-11111 films.

Electrical transport properties

The temperature-dependent resistance (R–T) of pure and Mn-
doped FeSe-11111 films under c-axis magnetic fields are
shown in figures 2(a) and (b), respectively. As elemental Mn
is incorporated, the Tc, the onset temperature of zero-resist-
ance, declines from 42.0 K to 36.6 K and the residual resist-
ance ratio (RRR=R300K/R50K, insets of figures 2(a) and (b))
decreases from 42 to 13, which indicates that the Mn ions
weakly reduce the superconductivity and serve as extra
pairing breaking centers. With increasing fields, the resistive
transition becomes broadened and tailed, as widely observed
in high-Tc cuprates and iron-based superconductors [25–27],
and it is more evident in Mn-free films. This feature is caused
by the thermally assisted flux flow and reflects the strength of
the vortex pinning force [27]. Therefore, the ability of vortex
pinning in FeSe-11111 films is indeed improved by Mn
doping.

Figure 3(a) displays the representative I–V curves of Mn-
doped films, from which the Jc is extracted using the criterion of
1μV. Figure 3(b) shows the temperature dependence of Jc for
Mn-doped (red) and Mn-free (black) films under magnetic fields
along (open symbols) or perpendicular (closed symbols) to the
c-axis. The measurable ranges of Jc were limited by the size of
bridges and the upper limit of the applied current, leading to the
absence of high Jc data hereafter. Due to the intrinsic electronic
two-dimensional (2D) property of FeSe-11111 [14], the out-of-
plane magnetic field suppresses the superconductivity more
prominently than the in-plane one, accounting for the significant
Jc anisotropy. It is noted that the Jc values of both Mn-free and
Mn-doped films maintain the order of 1×105 A cm−2 under
9 T at 10 K, which is higher than the value of 1×102 A cm−2

in FeSe-11111 single crystals [28]. The depairing current density
of (Li,Fe)OHFeSe can be estimated by = j

m pl x
J ,0 3 3 ab

0

0
2

where

j0 is the flux quantum, and using values of the penetration depth
λ∼281 nm [29] and the coherence length ξab∼2.21 nm [15].
The calculated value of J0∼57.7MA cm−2 indicates that the
FeSe-11111 material has great potential of Jc. Thus, such a
dramatic enhancement of Jc is an intrinsic property of the high-

quality films [12, 30]. It demonstrates that superconducting
FeSe-11111 crystalline films are superior to single crystals to
achieve high Jc, as commonly seen in other iron-based super-
conductors [6, 8]. Moreover, it is apparent that the enhancement
of Jc in FeSe-11111 films is by Mn doping under both out-of-
plane and in-plane magnetic fields. For instance, the resultant
value of Jc increases from 0.9 to 5.1×105 A cm−2 under 9 T
(H//c) at 10 K. Even for the self- field Jc, the performance of
Mn-doped films is superior to Mn-free films below 30K. In
addition, the enhancement of Jc via Mn doping keeps increasing
with a decreasing temperature, making the Mn-doped films more
interesting in the low-temperature, high-field magnet applica-
tions. This result confirms that Mn doping is beneficial to the
enhancement of Jc for FeSe-11111 films.

Pinning mechanism analysis

To elucidate the origin of Jc enhancement in Mn-doped FeSe-
11111 films, we have investigated the magnetic field
dependence of Fp (= Jc×H). Due to the strong tail effects of
R–T curves, it is difficult to determine the Hirr accurately,

Figure 2. (a), (b) Temperature-dependent resistance of Mn-free and
Mn-doped FeSe-11111 films under various c-axis magnetic fields up
to 9 T, respectively. The insets show the RRR=R300K/R50K for
corresponding films.
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which is commonly used to normalize the magnetic field
[31, 32]. In order to improve the accuracy, the normalized
pinning force density f=Fp/Fp,max is scaled with field
h=H/Hmax, where the Fp,max is the maximal Fp and Hmax is
the corresponding magnetic field [33, 34]. Figure 4 shows
plots of scaled data for Mn-doped (red) and Mn-free (black)
films. They both follow a temperature independent scaling,
indicating there is single dominant pinning mechanism within
measured temperature range. Thus, we can analyze the scal-
ing of f (h) by the following equations [18]:

⎜ ⎟⎛
⎝

⎞
⎠ ( )= -f h

h9

4
1

3
for normal point pinning, 1

2

⎜ ⎟⎛
⎝

⎞
⎠ ( )= -f h

h25

16
1

5
for normal surface pinning. 20.5

2

It turns out that both cases can be well fitted by equation (2)
below Hmax, demonstrating the dominant pinning mechanism
owing to normal surface pinning. These equations actually
originate from the Dew-Hughes model [32], where the normal
surface pinning refers the pinning centers arising from 2D
non-superconducting areas such as grain boundaries, plate-
like precipitates, and the surface of superconductors. This

outcome is reasonable given that the insulating (Li,Fe)OH
spacer layers may serve as the surface pinning centers in
FeSe-11111 superconductors. Meanwhile, above Hmax, both
scaled plots deviate from the theoretical fitting curve, and this
deviation is more pronounced in the case of Mn-doped films.
The similar feature was also observed in YBa2Cu3O7−δ

[33, 34], Bi2Sr2CaCu2O8+x [35], Nd2−xCexCuO4−δ [36], and
Mn-doped KxFe2−ySe2 single crystals [18], which were
attributed to the effect of flux creep. In the normal surface
pinning, the Fp is proportional to the pinning center density,
implying that the improvement of Jc stems from the extra
pinning centers induced by Mn doping. This is consistent
with the prior evidence of the expanded FWHM of the
rocking curve and the decreased RRR value in Mn-doped
films, due to the increase of crystal defects and scattering
centers. Further investigation is needed into how the Mn ions
affect the vortex behavior of FeSe-11111 films. One possi-
bility we can speculate on is that the Mn ions are doped partly
into the (Li,Fe)OH- interlayers, with the point defect con-
centration in the FeSe layers not sufficient to change the
surface pinning behavior.

High-field performance

Figures 5(a) and (b) present the data of high-field (H // c) Jc
and Fp for Mn-doped and pure FeSe-11111 films at 5 K. Data
of SmFeAs(O,F) films [37], FeSe0.5Te0.5 films [7], P-doped
BaFe2As2 films [38] and YBa2Cu3O7−δ wires [39] at 4.2 K
were also included for comparison. The enhancement of
FeSe-11111 films, particularly for the high-field performance,
is significant, due to Mn doping. Notably, the high field tol-
erance of Jc for the Mn-doped film overwhelms other iron-
based superconductors, which is essential for high-field
magnet applications. Numerically, the corresponding Jc
increases from 0.03 to 0.32MA cm−2 under 33 T, three times
as large as 0.1 MA cm−2, the widely accepted value for

Figure 3. (a) The representative I–V curves of Mn-doped films
measured from 35 K to 27 K under 0 T. (b) Temperature dependence
of Jc for the Mn-doped (red) and Mn-free (black) films under various
applied fields along in-plane (H⊥c, closed symbol) and out-of-plane
(H//c, open symbol), respectively.

Figure 4. Normalized vortex pinning force density f=Fp/Fp,max

versus field h=H/Hmax at various temperatures for Mn-doped and
Mn-free films. The green line is the fit curve of normal point pinning
and the blue line is related to normal surface pinning.
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practical applications [2, 9]. It is worth noting that the Fp of
the Mn-doped film monotonically increases up to 106GNm−3,
as shown in figure 5(b), and it is the only iron-based super-
conductor that resembles the high-field performance of
YBa2Cu3O7−δ to date. This feature indicates that the Mn-doped
FeSe-11111 films provide a potential extra material for extre-
mely high magnetic field applications, besides cuprates [40]. To
our knowledge, the high-field Jc and Fp of Mn-doped FeSe-
11111 films obtained in this work set new records among all
iron-based superconductors. Moreover, the Jc of Mn-doped
films may increase further given that: (1) the Tc of Mn-doped
(Li,Fe)OHFeSe superconductors could be further tuned up to
41 K with proper Mn incorporation [21], and (2) introducing
extra artificial pinning centers, similar to proton or ion irradia-
tion, could enhance Jc more significantly [17, 19].

Conclusion

Mn ions are uniformly incorporated into superconducting
FeSe-11111 crystalline films and the Jc is remarkably
enhanced to 0.32MA cm−2 under 33 T, which is, to our
knowledge, the highest reported value so far among various
iron-based superconductors. It is found that the normal sur-
face pinning dominates both films and the giant enhancement
of Jc stems from extra pinning centers induced by Mn doping.
Combined with energy-saving hydrothermal synthesis, the
Mn doping method utilized in this work can serve as an easy,
fast, and low-cost way to effectively enhance Jc for inter-
calated iron selenide superconductors. These results demon-
strate that the nontoxic Mn-doped superconducting (Li,Fe)
OHFeSe crystalline films have very promising prospects in
high-field applications.
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