

# Tuning charge and orbital ordering in DyNiO<sub>3</sub> by biaxial strain

Litong Jiang(姜丽桐), Kuijuan Jin(金奎娟), Wenning Ren(任文宁), and Guozhen Yang(杨国桢) Citation:Chin. Phys. B, 2021, 30 (11): 117106. DOI: 10.1088/1674-1056/abfbcf Journal homepage: <u>http://cpb.iphy.ac.cn; http://iopscience.iop.org/cpb</u>

What follows is a list of articles you may be interested in

# Electronic and optical properties of 3N-doped graphdiyne/MoS<sub>2</sub> heterostructures tuned

# by biaxial strain and external electric field

Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起) Chin. Phys. B, 2021, 30 (11): 117103. DOI: 10.1088/1674-1056/ac1927

# Tuning transport coefficients of monolayer $MoSi_2N_4$ with biaxial strain

Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋) Chin. Phys. B, 2021, 30 (6): 067102. DOI: 10.1088/1674-1056/abdb22

First-principles investigation of the valley and electrical properties of

# carbon-doped $\alpha$ -graphyne-like BN sheet

Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙 龙)

Chin. Phys. B, 2021, 30 (5): 057101. DOI: 10.1088/1674-1056/abddac

# Electronic properties of size-dependent MoTe<sub>2</sub>/WTe<sub>2</sub> heterostructure

Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起) Chin. Phys. B, 2019, 28 (**10**): 107101. DOI: 10.1088/1674-1056/ab3b53

# A $k \cdot p$ analytical model for valence band of biaxial strained Ge on (001) Si<sub>1-x</sub>Ge<sub>x</sub>

Wang Guan-Yu,Zhang He-Ming,Gao Xiang,Wang Bin,Zhou Chun-Yu Chin. Phys. B, 2012, 21 (5): 057103. DOI: 10.1088/1674-1056/21/5/057103

\_\_\_\_\_

# Tuning charge and orbital ordering in DyNiO<sub>3</sub> by biaxial strain<sup>\*</sup>

Litong Jiang(姜丽桐)<sup>1,2</sup>, Kuijuan Jin(金奎娟)<sup>1,2,3,†</sup>, Wenning Ren(任文宁)<sup>1,2</sup>, and Guozhen Yang(杨国桢)<sup>1,2,3</sup>

<sup>1</sup>Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,

Chinese Academy of Sciences, Beijing 100190, China

<sup>2</sup>School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

<sup>3</sup>Songshan Lake Materials Laboratory, Dongguan 523808, China

(Received 31 March 2021; revised manuscript received 21 April 2021; accepted manuscript online 27 April 2021)

The first-principles calculations were used to explore the tunable electronic structure in  $DyNiO_3$  (DNO) under the effects of the biaxial compressive and tensile strains. We explored how the biaxial strain tunes the orbital hybridization and influences the charge and orbital ordering states. We found that breathing mode and Jahn–Teller distortion play a primary role in charge ordering state and orbital ordering state, respectively. Additionally, the calculated results revealed that the biaxial strain has the ability to manipulate the phase competition between the two states. A phase transition point has been found under tensile train. If the biaxial train is larger than the point, the system favors orbital ordering state. If the strain is smaller than the point, the system is in charge ordering state favorably.

Keywords: charge ordering, orbital ordering, Jahn-Teller distortion, biaxial strain

PACS: 71.70.Fk, 31.15.-p, 31.15.A-, 31.15.ae

### DOI: 10.1088/1674-1056/abfbcf

### 1. Introduction

The rare-earth nickelates,  $RNiO_3$  (RNO, R strands for La or Ce, Pr, ..., Lu of the rare-earth series), have been studied for decades, because of a large variety of the possible physical properties.<sup>[1-4]</sup> Actually, this material is a type of ABO<sub>3</sub> perovskites. The R element locates on the A site and the Ni locates on the B site. An ideal RNO perovskite, which has six equal Ni–O bond lengths in its NiO<sub>6</sub> octahedra, is in  $Pm\bar{3}m$  phase.<sup>[4]</sup> RNO has a sharp metal–insulator transition, except R = La. This transition temperature ( $T_{MI}$ ) increases as the R cation decreases.<sup>[5,6]</sup>

The structural changes of DyNiO<sub>3</sub> (DNO), one in the family of RNiO<sub>3</sub> perovskite rare-earth nickelates, leading to the metal-insulator transition ( $T_{\rm MI} = 564$  K), have been explored via experiments.<sup>[7]</sup> This sharp transition is accompanied by a structural phase transition. Below  $T_{\rm MI}$ , namely, in the insulating or semi-conducting regime, DNO favors monoclinic with  $P2_1/n$  space group. The charge disproportionation breaks the equivalent NiO<sub>6</sub> octahedra into two nonequivalent ones: a type of NiO<sub>6</sub> octahedra with longer bonds (Ni<sub>L</sub>) and the other type of octahedra with shorter bonds (Ni<sub>S</sub>), which results from charge ordering.<sup>[3,6,8]</sup> Above  $T_{\rm MI}$ , DNO becomes orthorhombic with *Pbnm* space group with orbital ordering states. Experiments show that  $T_{\rm MI}$  is related to the strength of the orthorhombic distortion.<sup>[9]</sup>

For the basic electronic configuration, normally, the chemical valence of Ni ions is +3, with the low-spin d<sup>7</sup> electronic configuration, where  $t_{2g}$  orbitals are fully occupied and only one electron left in the two  $e_g$  orbitals, if we assume that

the NiO<sub>6</sub> octahedra are perfect.<sup>[10]</sup> Those two eg orbitals are supposed be equally occupied without the crystal field induced by the orthorhombic distortion. In reality, RNO can be illustrated by a charge transfer energy  $\Delta$ , because of the hopping between O 2p and the Ni d orbitals. The ligand hole in the oxygen 2p bands is denoted by L.<sup>[11]</sup> So the ground state in RNO should be illustrated as a mixture of  $d^7$  and  $d^8L$ . This could explain that, in recent years, the configuration of  $P2_1/n$ is more commonly used as  $2 \times (d^7) \rightarrow d^8 + d^8 L^2$  rather than  $2 \times (d^7) \rightarrow d^8 + d^6$  at Ni sites.<sup>[12]</sup> In *Pbnm* phase, the Ni ions are more commonly used as 3d<sup>7</sup> or 3d<sup>8</sup>L.<sup>[13,14]</sup> Regularly, the nominal d<sup>7</sup> configuration is stable under a Jahn-Teller distortion, which is assumed to follow an electronic driving force,<sup>[8]</sup> aiming for removing the degeneracy of the eg orbitals.<sup>[15]</sup> The electron occupation of the 3d orbitals leads to rich physics, via the hybridization of Ni and O, which can be manipulated by structural changes.

The substrate fixes the in-plane lattice constants of epitaxial growth films with distortions, rotations, octahedral tilts, and lattice symmetry, so that the thin films behave differently from their bulk counterpart.<sup>[16,17]</sup> The crystal structures of nickelates are capable of being tuned by producing epitaxial films on various substrates, which has been reported in several materials of *R*NO family under the in-plane biaxial strain.<sup>[2,17–20]</sup> Because of the in-plane mismatch, the out-of plane lattice parameter of the film will be stretched or compressed. Consequently, the oxygen octahedra obtain the staggered Jahn–Teller distortion under the tensile strain or the charge disproportion under sufficient compressive strain.<sup>[10]</sup>

<sup>†</sup>Corresponding author. E-mail: kjjin@iphy.ac.cn

<sup>\*</sup>Project supported by the National Key Basic Research Program of China (Grant No. 2019YFA0308500), the National Natural Science Foundation of China (Grant No. 11721404), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33030200).

<sup>© 2021</sup> Chinese Physical Society and IOP Publishing Ltd

For RNO, epitaxial strain is a widely investigated method to manipulate functional properties.<sup>[17-22]</sup> Mikheev et al. reported that NdNiO<sub>3</sub> thin films are capable of being manipulated between the paramagnetic metallic state and the antiferromagnetic insulating state by applying epitaxial strain and changing thickness.<sup>[23]</sup> So many research works tried strain engineering to obtain charge or orbital ordering of eg orbitals for other common nickelates in RNO series.<sup>[24-26]</sup> He et al. explored the LuNiO<sub>3</sub> under biaxial strain in Ref. [24], which revealed that with sufficient applied strain (around 4%) the system undergoes a first-order transition. Zhang et al. suggested that the metal-insulating transition temperature is relevant to symmetry. Since T<sub>MI</sub> is suppressed in NdNiO<sub>3</sub>/YAlO<sub>3</sub> by tuning the distortion of the epitaxial films.<sup>[25]</sup> Varignon et al. focused on PrNiO<sub>3</sub> and NdNiO<sub>3</sub> in Ref. [26], which reported that the first order phase transition can be tuned by strain. But no study about the strain effect in DNO has been reported yet. In this paper, by carrying out density functional theory (DFT) calculation, we present that a sufficient applied tensile strain forces the system into a non-charge-ordered state. Additionally, the staggered Jahn-Teller distortion can be characterized by this tensile strain. We also show how the in-plane biaxial compressive and tensile strains modify the electronic configuration. This work provides some theoretical results for further experiments about growing DNO thin films for manipulating its electronic structures.

### 2. Method

Our DFT calculations were conducted by generalgradient approximation (GGA) with the Perdew-Burke-Ernzerhof revised for solids (PBEsol)<sup>[27]</sup> and projector augmented wave (PAW) method<sup>[28]</sup> as implemented in the Vienna ab initio simulation package (VASP).<sup>[29]</sup> For the relaxation part, the  $6 \times 6 \times 2$  centered k-point meshes were used. For magnetism, we considered four 20-atom-structure antiferromagnetic configurations: A-type antiferromagnetic (A-AFM), C-type antiferromagnetic (C-AFM), G-type antiferromagnetic (G-AFM), and ferromagnetic (FM) ones. Here, a Hubbard U correction<sup>[30]</sup> with  $U_{\rm Ni} = 2 \text{ eV} (J = 0 \text{ eV})$  was added to improve the description of the electronic structure of Ni (transition metal). Previous works showed that a small U was used normally for describing nickelates accurately.<sup>[31,32]</sup> Some articles reported that U(Ni) = 0-6 eV does not impact the crystal geometry very much.<sup>[21,26,33]</sup> Some articles showed different values of U have negligible effects on the crystal structure, but open the band gap with larger U.<sup>[30]</sup> Here, we also used other U values (i.e., 1 eV, 3 eV, 4 eV, 5 eV, and 6 eV). The PAW potentials were Ni  $(3p^63d^84s^2)$ , Dy  $(6s^26p)$ , and O  $(2s^22p^4)$ . The energy cutoff was 540 eV. The bond lengths and octehedra volumes were read via VESTA.<sup>[34]</sup>

### 3. Results

We calculated the ground state structure of DNO, which is in  $P2_1/n$  phase. Figure 1 shows the crystal structure of the system which is obtained by DFT +U calculations. The lattice parameters of DNO are listed in Table 1. Our optimized parameters are very close to the experimental ones.<sup>[7,33]</sup> The in-plane pseudocubic lattice parameter a = 3.78 Å ( $a = (\sqrt{a^2 + b^2})/2$ ), which is half of the diagonal of the primitive cell. Because the in-plane lattice parameters of the film must fix with the lattice constants of the substrate. An in-plane lattice mismatch  $\eta$  is defined as  $\eta = (a_{sub} - a')/a'$ . Here, a'denotes the in-plane lattice constant of the DNO under biaxial strain and  $a_{sub}$  denotes the in-plane lattice constant of the substrate. All the parameters mentioned above in this paper are pseudocubic parameters.



Fig. 1. The structure of the ground state of DNO in  $P2_1/n$  space group. NiO<sub>6</sub> octahedra are illustrated by gray cubes. The navy, gray, and red spheres represent Dy, Ni, and O atoms, respectively.

 Table 1. Calculated optimized and experimental lattice parameters of DNO.

| Lattice parameters | Calc. (Å) | Expt. <sup>a</sup> (Å) |
|--------------------|-----------|------------------------|
| а                  | 5.51      | 5.48                   |
| b                  | 5.18      | 5.11                   |
| С                  | 7.42      | 7.32                   |
|                    |           |                        |

<sup>a</sup>Refs. [7,33].

-147.700P21/nPbnm-147.925Energy (eV) -148.150-148.375-148.6001 0 1 2 3  $\mathbf{4}$  $\mathbf{5}$ 6 Mismatch (%)

**Fig. 2.** Total energy versus lattice mismatch. The purple line represents *Pbnm* phase; the pink line represents  $P2_1/n$  phase.

The energy of DNO with applied compressive or tensile biaxial strain is plotted in Fig. 2. A first-order phase transition from  $P2_1/n$  to *Pbnm* occurs driven by the tensile strain, obviously. Since the energy of the  $P2_1/n$  phase is lower than that of the *Pbnm* phase when the tensile strain is less than 4.7%, which also means the charge ordering is more stable. The transition occurs in the *ab* plane around 4.7% mismatch, corresponding to  $a_{sub} = 3.95$  Å. In contrast, the orbital order-

ing (*Pbnm*) phase is energetically favorable, if the mismatch under tensile strain is larger than 4.7%.



Fig. 3. The schemes of (a) breathing modes. (b) Type-d Jahn-Teller distortion and (c) type-a Jahn-Teller distortion.

Figure 3 demonstrates the diagrams of octahedra distions in breathing mode and Jahn–Teller distortions. In the breathing mode, as depicted in Fig. 3(a), the Ni<sub>L</sub> and Ni<sub>S</sub> are adjacent alternatively. A large difference between the Ni<sub>L</sub> and Ni<sub>S</sub> octahedra implies a strong breathing mode. For the Jahn–Teller distortions, there are two types, which play important roles under biaxial strains. The one, which forces the shrink of *z* direction of the octahedra, is named by type-a Jahn–Teller distortion in Fig. 3(c). The other one, which distorts the in-plane bonds of the octahedron, is termed as type-d Jahn–Teller distortion (see Fig. 3(b)). The Ni<sub>x</sub> is defined as its Ni–O bonds in *x* direction longer than that in *y* direction in an octahedron. Meanwhile, in the adjacent octahedron Ni<sub>y</sub>, the Ni–O bonds along *x* direction are shorter than that along *y* direction.

Before exploring the distortions in DNO under biaxial strain, it is to be mentioned that, the *Pbnm* crystal structure is very close to its bulk crystal structure and is far away from the  $P2_1/n$  bulk crystal structure after relaxation. Moreover, the symmetry of *Pbnm* crystal structure is lower than that of  $P2_1/n$ . Therefore, it is reasonable to use the *Pbnm* to denote the state without charge disproportionation, and use the  $P2_1/n$  to denote the state with charge disproportionation. We use symmetrical vibration modes to illustrate the lattice distortions and phase transition in DNO under biaxial strain. The breathing mode can be characterized by  $Q_1$  mode, as shown in Fig. 4(a). The strength of the  $Q_1$  mode is defined as Eq. (1).

The  $Q_1$  values can represent the shrink or expansion of the NiO<sub>6</sub> octahedra. The difference between  $Q_1$  values of adjacent octahedra (Ni<sub>8</sub> and Ni<sub>L</sub>) is shown in Fig. 3(a). The larger difference leads to a strong breathing mode. The Jahn–Teller distortions can be specified by  $Q_2$  and  $Q_3$  modes (see Figs. 4(b) and 4(c)). The strengths of  $Q_2$  and  $Q_3$  modes are defined as Eqs. (2) and (3), respectively.<sup>[35,36]</sup> The larger  $Q_2$  and  $Q_3$  that we obtain in the system, the stronger the type-d and type-a Jahn–Teller distortion occur.

$$Q_1 = (L_{\rm S} + L_{\rm M} + L_{\rm L})/\sqrt{3},$$
 (1)

$$Q_2 = (L_{\rm L} - L_{\rm M})/\sqrt{2},\tag{2}$$

$$Q_3 = (2L_{\rm S} - L_{\rm M} - L_{\rm L})/\sqrt{6},\tag{3}$$

where  $L_L$ ,  $L_M$ , and  $L_S$  represent the long, medium, and short (*z* direction) Ni–O bonds, respectively.



**Fig. 4.** (a)–(c) The  $Q_1$ ,  $Q_2$ , and  $Q_3$  modes. The arrows illustrate the displacements generated by the displacement of the oxygen atoms with respect to the regular octahedron.



Fig. 5. (a)–(c) Calculated  $Q_1$ ,  $Q_2$ , and  $Q_3$  given by Eqs. (1), (2), and (3) versus lattice mismatch of Ni<sub>L</sub>, Ni<sub>S</sub>, Ni<sub>x</sub>, and Ni<sub>y</sub>.

Figure 5 demonstrates the changing trend of  $Q_1$ ,  $Q_2$ , and  $Q_3$  under the impact of the lattice mismatch. In Fig. 5(a), the increase in  $Q_1$  means the expansion of the NiO<sub>6</sub> octahedra becomes larger with the increasing tensile strain. The difference between the values of  $Q_1$  for Ni<sub>L</sub> and Ni<sub>S</sub> in the charge or-

dering phase is larger than zero. This can be understood that the purple cubes are larger than the crayon ones, as shown in Fig. 3(a). As mentioned above, it means the breathing mode does exist. However, when the mismatch is larger than 4.7%, the breathing mode vanishes in the orbital ordering phase, because of the zero difference between the values of  $Q_1$  for Ni<sub>x</sub> and Ni<sub>y</sub>. In Fig. 5(b),  $Q_2$  of Ni<sub>x</sub> is near zero under the compressive strain. With the increasing tensile strain,  $Q_2$  rises promptly. This helps us to explain the emergency of type-d Jahn–Teller distortion in the *Pbnm* phase. In Fig. 5(c),  $Q_3$  for both states shrinks, when the lattice mismatch gets larger. This can be accepted that the lattice constant *c* is compressed when the film grows on a substrate with large lattice. So, it concludes that the tensile strain strengthens the type-a Jahn–Teller distortion efficiently.

Then, we focus on the electronic structure of DNO. The O 2p bands hybridize with the  $e_g$  orbitals of Ni<sub>S</sub>, because the stronger Coulomb repulsion is induced by the shorter distance between the Ni and O. For the charge ordering phase, the splitting energy of  $e_g/t_{2g}$  in Ni<sub>S</sub> is larger than that of Ni<sub>L</sub>, resulting in the energy difference of  $e_g$  in the two neighboring Ni ions and a charge ordering. So, Ni–O octahedron being expanded can localize the Ni<sub>L</sub>  $e_g$  states, which further results in a relatively larger magnetic moment. The Ni<sub>L</sub> obtains  $1.2 \mu_B$ , according to our calculations. These results are in agreement with that the charge ordering is more likely to be  $2 \times 3d^8L \rightarrow 3d^8 + 3d^8L^2$ .<sup>[11,13,14,32]</sup> In the orbital ordering state, one of the  $e_g$  states is occupied alternately. A longer

bond of Ni–O is less capable of attracting charge than a shorter one, which is formed by the hybridization between O 2p and Ni 3d. This is consistent with the result that the real charge value is more than 7 by our calculations. For the Ni<sub>x</sub> in orbital ordering, the tensile strain strengthens the JT distortion, leading to a splitting of  $e_g$  levels, which enhances the orbital ordering.

We then represent the orbital-resolved electronic density of states (DOS) of Ni<sub>S</sub>, Ni<sub>L</sub>, and Ni<sub>x</sub> (see Fig. 6). The different DOS between Ni<sub>S</sub> and Ni<sub>L</sub> sites also interprets their different electronic states. The calculated orbital-resolved density of states of Ni<sub>S</sub> and Ni<sub>L</sub> in  $P2_1/n$  phase is presented in Fig. 6, where five d orbitals are divided by Jahn–Teller distortion into distinct orbitals eg and t<sub>2g</sub>, respectively. These results indicate that eg and t<sub>2g</sub> orbitals of the Ni atoms split into a high and a low energy regions. In Fig. 6(a), the major spins of the Ni<sub>L</sub> orbitals are mostly occupied. In Fig. 6(c), the minor spins of the eg orbitals are basically unoccupied. In contrast, Ni<sub>S</sub> eg orbitals (major spin) are occupied partly, with the t<sub>2g</sub> orbitals are fully occupied, as shown in Figs. 6(b) and 6(d). From the DOS configuration, it is shown that the DOS splitting in the 3d shell of Ni<sub>L</sub> is more strong than that of Ni<sub>S</sub>.



Fig. 6. The local and projected density of states of (a)–(d) the Ni<sub>L</sub> and Ni<sub>S</sub> in  $P2_1/n$  structure (charge ordering state) under compressive strain (mismatch = -1%); (e), (f) Ni<sub>x</sub> in *Pbnm* structure (orbital ordering state) under tensile strain (mismatch = 4%). The red (blue) color denotes the major spin (minor spin) states.

The electrons and bonds behaviors in DNO can be characterized by the contour maps of charge densities in (001) and (110) slices, as shown in Fig. 7. In the orbital ordering state, it is proved that the Ni<sub>x</sub> and Ni<sub>y</sub> octahedra are bond centered instead of charge centered (see Fig. 7(a)). Because the longer bonds between the Ni<sub>x</sub> and O 2p are only in the *x* direction. Furthermore, the rotation symmetry between neighboring octahedra is consistent with the  $e_g$  alternate occupations. In Fig. 7(b), the disproportional bonds arrangement along *x* direction and equivalent arrangement along *z* direction are con-

sistent with the in-plane Jahn–Teller distortion. For the charge ordering state, the Ni<sub>S</sub> ions have obvious Ni<sub>S</sub>–O 2p hybridization which is consistent with the electronic configuration of Ni<sub>S</sub> with  $3d^8 + 3d^8L^2$  in both (110) and (001) slices, as shown in Figs. 7(c) and 7(d). Figures 6(e), 6(f), 7(a), and 7(b) are helpful to explain the electronic arrangement for the orbital ordering phase. Here, three almost empty e<sub>g</sub> orbitals (blue) are above the Fermi level with only one occupied spin e<sub>g</sub> orbital (red) left. It implies that the hybridization between Ni<sub>x</sub> and O 2p states obtains a significant occupation.



**Fig. 7.** The contour maps of the electron density: (a), (b)  $Ni_x$  in *Pbnm* structure (OO state) in (001) and (110) slices; (c), (d)  $Ni_s$  and  $Ni_L$  in  $P2_1/n$  structure (charge ordering state) in (001) and (110) slices. The red green blue (RGB) color scale range bar is given. The RGB scale represents electron density from low (green) to high (yellow).

The band gap has been calculated to explore its change with biaxial strain in Fig. 8. The band gap shrinks gradually at the beginning with the tensile strain in charge ordering phase. But in the orbital ordering phase, it becomes larger with the tensile strain. Because the top of the valence band is composed of Ni<sub>L</sub> bonds; the bottom of the conduction band is composed of Nis eg bands. The eg energy shift induces the band gap, which is connected with the strength of the bond disproportionation. It is capable of shifting Ni<sub>L</sub> eg orbitals downward and the Nis eg orbitals upward. So that the breathing mode opens the gap, which can explain that change in band gap is larger with the enhanced charge ordering phase. The splitting of the eg orbital induces the generation of the band gap, where the band gap of the orbital ordering structure increases with the tensile strain. In the orbital ordering, the eg orbitals (major spin) are mostly unoccupied. So, the gap is enlarged by the type-d Jahn-Teller distortion. Additionally, the tensile strain in the orbital ordering phase is capable of enlarging both typed and type-a Jahn–Teller distortions and then opens the band gap, which is in agreement with Fig. 8.



**Fig. 8.** Band gap of DNO versus lattice mismatch. The purple line represents *Pbnm* phase and the pink line represents  $P2_1/n$  phase.

### 4. Conclusion and perspectives

The density functional theory has been used to analyze the effects of biaxial strain on the electronic configuration of the transition between charge ordering state and orbital ordering state in DNO. Our calculations have shown that with large enough tensile strain, the charge ordering vanishes. But the orbital ordering emerges at the lattice mismatch  $\eta = 4.7\%$ . This transition proves that the emergence of type-d Jahn-Teller mode is encouraged by tensile strain. The breathing mode is encouraged by compressive strain. In the charge ordering state, the breathing mode induces the difference between the neighboring NiO<sub>6</sub> octahedra and splitting of  $e_g/t_{2g}$ , which leads to a charge transfer between Ni<sub>S</sub> and Ni<sub>L</sub>. The Nis is with the configuration of  $3d^8L^2$ , because of the strong hybridization with O 2p. The Ni<sub>L</sub> has a higher occupation of  $3d^8$ , since its lower  $e_g$  energy level. By applying biaxial strain from  $\eta = -1\%$  to  $\eta = 6\%$ , the band gap becomes narrow gradually at first but becomes wide slightly in the orbital ordering state. In the same situation, type-d Jahn-Teller distortion is enhanced in orbital ordering state, but the breathing mode is shrunk in charge ordering state. Finally, we hope that these results can inspire the relative experimental research on manipulating the electronic structure in DyNiO<sub>3</sub>.

### References

- Staub U, Meijer G I, Fauth F, Allenspach R, Bednorz J G, Karpinski J, Kazakov S M, Paolasini L and d'Acapito F 2002 *Phys. Rev. Lett.* 88 126402
- [2] Fernandez-Diaz M T, Alonso J A, Martinez-Lope M J, Casais M T, Garcia-Munoz J L and Aranda M A G 2000 Physica B 276 218
- [3] Alonso J A, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G, Martínez-Lope M J and Casais M T 1999 Phys. Rev. Lett. 82 3871
- [4] Mizokawa T, Khomskii D and Sawatzky G 2000 Phys. Rev. B 61 11263
- [5] Hwang H Y 2006 MRS Bulletin 31 28
- [6] Medarde M L 1997 J. Phys.: Condens. Matter 9 1679
- [7] Alonso J A, Martinez-Lope M J, Demazeau G, Fernandez-Diaz M T, Presniakov I A, Rusakov V S, Gubaidulina T V and Sobolev A V 2008 *Dalton Trans.* 46 6584

- [8] Catalano S, Gibert M, Bisogni V, Peil O E, He F, Sutarto R, Viret M, Zubko P, Scherwitzl R, Georges A, Sawatzky G A, Schmitt T and Triscone J M 2014 APL Materials 2 116110
- [9] Barman S R, Chainani A and Sarma D D 1994 Phys. Rev. B 49 8475
- [10] Middey S, Chakhalian J, Mahadevan P, Freeland J W, Millis A J and Sarma D D 2016 Ann. Rev. Mater. Res. 46 305
- [11] Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G and Schmitt T 2016 Nat. Commun. 7 13017
- [12] Mazin I I, Khomskii D I, Lengsdorf R, Alonso J A, Marshall W G, Ibberson R M, Podlesnyak A, Martínez-Lope M J and Abd-Elmeguid M M 2007 Phys. Rev. Lett. 98 176406
- [13] Johnston S, Mukherjee A, Elfimov I, Berciu M and Sawatzky G A 2014 *Phys. Rev. Lett.* **112** 106404
- [14] Park H, Millis A J and Marianetti C A 2012 Phys. Rev. Lett. 109 156402
- [15] Garcia-Munoz J L, Rodriguez-Carvajal J and Lacorre P 1994 Phys. Rev. B 50 978
- [16] Rodríguez-Carvajal J, Rosenkranz S, Medarde M, Lacorre P, Fernandez-Díaz M, Fauth F and Trounov V 1998 *Phys. Rev. B* 57 456
- [17] Chen H, Kumah D P, Disa A S, Walker F J, Ahn C H and Ismail-Beigi S 2013 Phys. Rev. Lett. 110 186402
- [18] Torriss B, Margot J and Chaker M 2017 Sci. Rep. 7 40915
- [19] Bruno F Y, Rushchanskii K Z, Valencia S, Dumont Y, Carrétéro C, Jacquet E, Abrudan R, Blügel S, Ležaić M, Bibes M and Barthélémy A 2013 Phys. Rev. B 88 195108

- [20] Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H, Zhou Y L and Yang G Z 2005 *Phys. Rev. B* 71 184428
- [21] Jiang L T, Jin K J, Ma C, Ge C, Yang G Z and He X 2018 Phys. Rev. B 97 195132
- [22] Xu Z T, Jin K J, Gu L, Jin Y L, Ge C, Wang C, Guo H Z, Lu H B, Zhao R Q and Yang G Z 2012 Small 8 1279
- [23] Mikheev E, Hauser A J, Himmetoglu B, Moreno N E, Janotti A, Van de Walle C G and Stemmer S 2015 Sci. Adv. 1 e1500797
- [24] He Z and Millis A J 2015 *Phys. Rev. B* **91** 195138
- [25] Zhang J Y, Kim H, Mikheev E, Hauser A J and Stemmer S 2016 Sci. Rep. 6 23652
- [26] Varignon J, Grisolia M N, Íñiguez J, Barthélémy A and Bibes M 2017 npj Quantum Materials 2 1
- [27] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 *Phys. Rev. Lett.* **100** 136406
- [28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
- [29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
- [30] Dudarev S, Botton G, Savrasov S, Humphreys C and Sutton A 1998 Phys. Rev. B 57 1505
- [31] Mercy A, Bieder J, Iniguez J and Ghosez P 2017 Nat. Commun. 8 1677
- [32] Hampel A and Ederer C 2017 Phys. Rev. B 96 165130
- [33] Yoo P and Liao P 2020 Phys. Chem. Chem. Phys. 22 6888
- [34] Momma K and Izumi F 2011 J. Appl. Crystallography 44 1272
- [35] Kanamori J 1960 J. Appl. Phys. 31 S14
- [36] Van V J H 1939 J. Chem. Phys. 7 72