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A B S T R A C T   

The surface morphology of metal particles can be adjusted by the annealing process to enhance the activity of 
Raman substrate and achieve an ultra-low concentration detection limitation. In this study, a surface-enhanced 
Raman scattering (SERS) substrate of coccinellaseptempunctate-like silver nanospheres coated with a silver 
nanoisland structure (Ag NI@Ag NSs) was prepared using a simple annealing process. Numerous silver nano
spheres were dispersed on the surface of the silver nanoislands, which exhibited a single crystal plane (111) 
orientation. The SERS substrate had an enhancement factor of 108 for Rhodamine B (Rh B) and was highly 
sensitive to phosphoethanolamine (PETA). The SERS response toward PETA showed excellent correlation during 
the range of 5 × 10− 7 - 1 × 10− 5 mol/L with the detection limitation as low as 5 × 10− 7 mol/L, and the cor
relation coefficient is 0.9918. The simulated high-pressure test showed that the SERS response could be still 
observed at 1100 m sub ocean pressure even with a PETA concentration of 1 mM. The test results of selectivity, 
reproducibility, and accuracy indicated that the Ag NI@Ag NS sensor possessed potential applications in the 
deep-sea analytical and other related fields.   

1. Introduction 

In-situ deep-sea exploration presents great challenges because of the 
extreme and complex deep-sea environment (cold seeps and hydro
thermal vents). Raman spectroscopy has the advantages of non-contact, 
direct detection, and simultaneous detection of multiple components, 
therefore, it has been widely used in in-situ deep-sea detection [1]. Sheri 
et al. employed the deep ocean Raman in-situ spectrometer (DORISS) 
system for the in-situ detection of deep-sea hydrothermal vent fluids and 
successfully obtained the in-situ Raman spectra of high-temperature 
hydrothermal fluids at a depth of approximately 2700 m [1,2]. Zhang 
et al. developed a deep-sea Raman insertion probe system [3], which 
realized in situ detection and analysis of physicochemical parameters of 
high-temperature (up to 450 ◦C) hydrothermal vent fluid temperature, 
composition (such as CO2, SO4

2− /HSO4
− , and H2.) [4], minerals [5], and 

overlying biota falling water [6]. These in-situ data evidenced that the 

deep-sea fluid content is much higher than the previous reports, indi
cating the importance of the in-situ data acquisition. 

The symbiotic mechanism between metazoans and chemoautotrophs 
is an important factor in maintaining the stability and sustainable life 
activities of deep-sea ecosystems, and it has become a point of discussion 
in deep-sea research [7,8]. Anaerobic oxidation of methane (AOM) 
mediated by Anaerobic Methanotrophic Archaea (ANME) is the primary 
process that provides energy to cold seep ecosystems by converting 
methane into inorganic carbon. The AOM process attenuates the emis
sion of the greenhouse gas methane and supports a large, diverse mi
crobial, and animal population [9–12]. Meanwhile, the head group of 
phosphatidylethanolamines (PE) can be used as a biomarker for 
archaeal symbiotic bacteria [13]. Moreover, the formation of the head 
group of PE is related to the formation of phosphoethanolamine (PETA) 
[14]. Therefore, the trace detection of PETA is of great significance for 
identifying the presence of deep-sea symbiotic bacteria and in-situ 
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detection of symbiotic bacterial metabolites. However, there is rare 
in-situ detection technologies for deep-sea extracellular metabolism. 
Traditional detection methods, such as colorimetry, liquid 
chromatography-coupled mass spectrometry (LC-MS), and nuclear 
magnetic resonance (NMR), cannot detect multicomponent simulta
neously, are time-consuming, expensive and have a low sensitivity 
[15–17]. Meanwhile, owing to the detection limitation of the Raman 
spectrum, it is difficult to detect deep-sea microbial metabolites or in
termediates at low concentrations. 

Surface-enhanced Raman scattering (SERS) mainly originates from 
the enhancement of the local electromagnetic field close to the precious 
metals (Ag and Au); therefore, it has the ability of ultrasensitive and 
rapid detection of trace molecules [18–21]. At present, the commonly 
used Raman signal enhancement media mainly include SERS substrates 
and nanosol. A SERS substrate is necessary to meet the requirements of 
deep-sea in situ experiments. Metal nanostructures dispersed on the 
sub-nanometer gap substrates are ideal for enhancing SERS signals [22]. 
Because the scattering cross-section of Ag is larger than that of Au, Ag is 
more advantageous than Au in the visible region [23]. The size [24,25], 
shape [26,27], and exposure surface of the metal nanostructures [28] 
are important factors for achieving chemical enhancement. Studies have 
shown that the Ag (111) facet had the lowest free energy; particularly, 
the Ag (111) facet had a stronger ability to adsorb molecules than other 
crystal surfaces, thus increasing the chemical enhancement of SERS [29, 
30]. In summary, it is necessary to design SERS substrates that can 
adsorb various of molecules at a low cost and with high stability, and 
oxidation resistance. 

From this perspective, we used a high-temperature annealing process 
to treat the quartz of the silver coated film and annealed it in air at
mosphere to obtain silver nanospheres (Ag NSs) loaded with a silver 
nanoisland (Ag NI) structure. Many nanospheres were dispersed on each 
nanoisland, with a diameter of approximately 40 nm and a spacing 
ranging from 5 to 70 nm, which had an excellent SERS effect. Consid
ering that the pressure at deep-sea cold seeps is greater than 11 MPa, the 
SERS substrate should have high oxidation resistance and be detected 
under ultra-high pressure. As a proof of concept, we simulated PETA 
(cell concentration levels, 1 mM) at the Ag NI@Ag NSs substrate under 
cold seeps pressure for detection. 

2. Materials and methods 

2.1. Materials 

The Ag nanofilm/quartz was provided by the Instituteis of Physics, 
Chinese Academy of Sciences. Phosphoethanolamine (PETA, ≥98.0%), 
L-threonine (≥98.0%), L-tryptophan (≥98.0%), rhodamine B (Rh B), 3- 
phenyl-L-alanine (≥98.0%) and anhydrous ethanol were purchased 
from Sigma-Aldrich. Ultrapure water (18.2 MΩ cm, produced by a Milli- 
Q system) was used in this study. 

2.2. Preparation of silver nanofilm/quartz substrate 

The clean quartz substrate was loaded into the chamber of an elec
tron beam deposition system (EBD FU-12PEB), and then the Ag film was 
deposited on the substrate at a rate of 2 A/s. A thickness monitor was 
introduced to measure the film thickness, and a silver film with a 
thickness of 100 nm was obtained after the EBD process. 

2.3. Annealing process fabricate Ag NI@Ag NSs/quartz 

The Ag nanofilm/quartz substrate was then annealed in a muffle 
furnace. The heating rate for the annealing process was 10◦C/s. The 
substrate was heated up to 420◦C and held for 10 min in air before 
cooling to 20◦C. During the annealing process of Ag film/quartz, accu
rate temperature control is significant. Additionally, to ensure the 
growth of uniformly dispersed Ag nanoparticles on the Ag nanoisland 

under similar experimental conditions, substrates at 300, 340, 380 and 
440◦C were prepared by changing the annealing temperature. 

2.4. Surface enhanced Raman scattering measurement 

First, Ag NI@Ag NSs on quartz were cleaned ultrasonically in 
acetone, ethanol, and deionized water and then stood or blow-dried with 
nitrogen for later use. The device used for the SERS was a confocal 
Raman microscope (WITec Alpha300 R System) produced by the 
German WITec Company [31]. All sample spectra were collected using 
controlled FIVE software processed using Project FIVE 5.0 and GRAM
S/AI 9.3 software for smooth baseline calibration and peak fitting. 
Gaussian fitting was used to obtain the Raman shift, peak width, and 
peak area of the three Raman peaks. The excitation laser wavelength 
was 532 nm, and the HE-NE laser microscope lens were ZEISS EC Epi
plan 100x/0.9 and ZEISS EC Epiplan 61x/1.0 water immersion objective 
lens. The lens could control the laser spot size to 0.9 micron while 
providing a clear microstructure of the sample; the laser power was 5 
mW. Each SERS was accumulated 20 times during the measurement 
process, and the integration time was set to 1 s. The signal-to-noise ratio 
of the obtained spectrum was high. The characteristic Raman peak Si 
(520 cm -1) was used to calibrate the spectrometer PETA. 

2.5. Simulation methods 

The electric field distribution of the Ag NI@Ag NSs was simulated the 
finite difference time domain (FDTD) method. The radius of the Ag NI 
and Ag nanospheres was 400 nm, and 20 nm, respectively, and the gap 
between the spheres was approximately 5 nm and 70 nm. The incident 
light was set to a wavelength of 532 nm and propagated along the z-axis, 
with the electric field polarized along the x-axis. Here, three monitors 
were placed perpendicular to the x, y, and z axes to capture the field 
distribution fully. The entire simulation region was set to 900 × 900 ×
900 nm, and all the boundaries were perfectly matched layer boundary 
conditions. The simulation time was set to 500 FS to ensure complete 
attenuation of the energy field. The mesh size is 1.5 × 1.5 × 2 nm. 

3. Result and discussion 

3.1. Synthesis process of Ag NI@Ag NSs and SERS enhanced mechanism 

In this study, high-temperature annealing process was used to pre
pare coccinellaseptempunctate-like silver nanoparticles SERS substrate. 
The main technological processes is shown in Fig. 1a. First, a quartz 
plate was deposited on a 100 nm thick silver film and then subjected to 
thermal annealing treatment in an air atmosphere. A porous Ag film can 
be obtained by thermal annealing at approximately 300 ◦C (corre
sponding to Fig. S1a). When the annealing temperature was changed 
between 320 and 380 ◦C, the silver film melted at high temperatures to 
form a smooth nanoisland structure with uniform dispersion (corre
sponding to Fig. S1b–d). A very distinct morphology was formed at 420 
◦C. The previously obtained nanoisland gradually became disordered, 
and many silver nanoparticles grew on the nanoisland surface, similar to 
the back pattern of the coccinellaseptempunctate. We refer to this as the 
Ag NI@Ag NSs (corresponding to Fig. S1e). The enhancement mecha
nism of the Ag NI@Ag NSs is shown in Fig. 1b. As Ag (111) crystal planes 
dominate Ag nanoparticles, the low free energy leads to a strong 
adsorption capacity; therefor, the measured molecules can be easily 
adsorbed on the surface of Ag NI@Ag NSs. Furthermore, the spacing of 
the silver nanoparticles on the surface of the silver nanoisland was be
tween 5 and 70 nm (Fig. S2e) and strong surface plasmon resonance 
enhanced Raman signal. The synergistic effect of chemical enhancement 
mechanism (CM) and electromagnetic enhancement mechanism (EM) 
resulted in excellent SERS activity of the Ag NI@Ag NSs. 
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3.2. Morphology and structure analysis 

Fig. 2A shows a scanning electron microscope (SEM) image of the as- 
prepared silver film after high-temperature annealing for 10 min at 380 
◦C, showing a smooth and evenly dispersed granular structure with an 
average size of approximately 800 nm. The single crystal morphology 
(Fig. 2B) also proved that its surface was very smooth. However, irreg
ularly shaped silver nanoislands were formed when we set the temper
ature to 420 ◦C (Fig. 2C). Further enlarged image of a single nanoisland 
(Fig. 2D) showed many smaller nanoparticles of approximately 20 nm in 
size on the surface of the nanoisland, which was similar to the decorative 
pattern of coccinellaseptempunctates. The morphological and structural 
evolution of the silver film were studied by varying the reaction tem
perature (Figs. S1, S2), which supports our hypothesis (in the Supporting 
Information). 

Energy Dispersive X-Ray Spectroscopy (EDX) elemental mapping 
obtained from the surface proved the elemental composition of the 
nanoparticles on the surface of the silver nanoislands. As shown in 

Fig. 3a, there are no oxygen atoms on the silver nanoisland; thus, the 
tiny nanoparticles loaded on its surface are all Ag nanoparticles. As the 
substrate was annealed in an aerobic environment of 320 ◦C, the Ag 
nanoparticles were still not oxidized, indicating that the Ag NI@Ag NS 
substrate has excellent oxidation resistance, which laid a foundation for 
its application in complex deep-sea environments. XRD (Fig. 3b) showed 
that the Ag base exposed only the Ag (111) crystal facet. Additionally, 
from the HRTEM image of Ag NI@Ag NSs, the calculated “d” spacing 
was 0.23 nm, which matched the most intense reflection from the (111) 
facet corresponding the fcc structure of Ag nanoparticles [32,33], and 
only the lattice fringe of Ag (111) was observed (Figs. 3c, d and S5). 
Among all the planes, the (111) facet had the lowest free energy. Thus, 
the (111) facet could adsorb molecules more strongly than the other 
surfaces, increasing the chemical enhancement of SERS [29]. And then, 
because the substrate was annealed in an air atmosphere, its oxidation 
resistance was improved [25]. 

Fig. 1. Schematic of fabrication process of Ag NI@Ag NSs (a); and SERS enhancement mechanism (b).  

Fig. 2. The SEM of (A), (B) Ag NS (380 ◦C) and (C), (D) AgNI@AgNSs.  
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3.3. Electromagnetic field distribution: FDTD simulation 

To investigate the origin of the SERS enhancement of Ag NI@Ag NSs 
observed in the experiment, we performed FDTD simulations of silver 
nanoislands and silver nanospheres grown on a quartz substrate. Fig. 4 
shows the x-z view electric field distribution of the coupled nano
structure at an excitation wavelength of 532 nm. A large field 
enhancement occurs at the junction of the silver nanoislands and silver 
nanospheres. Therefore, the large field intensity generated by the local 
surface plasmon coupling of silver nanoislands and silver nanospheres 
can induce the SERS enhancement of the Ag NI@Ag NSs. In addition, a 
large field enhancement was observed between silver nanospheres. The 
silver nanospheres on the inclined plane have a higher pair field strength 
and more hot spots. Thus, nanoscale gaps between the metal nano
structures are the main source of Raman scattering enhancement [34, 
35]. EF is usually defined as (E/E0)4, where E is the local maximum 
electric field, and E0 is the amplitude of the input source electric field in 
a linear simulation [36]. A large field enhancement (2.56 × 106) is 
observed at the junction between the nanostructures (Fig. S3). The 
discrepancy in the calculated EF between the experimental and FDTD 

simulations was that (I) SERS enhancement was a combined effect of EM 
enhancement and chemical enhancement, although only the EM 
enhancement was considered in the FDTD simulation; (II) the size and 
shape of the silver nanoislands were different, and the size and distance 
of silver nanospheres distributed on the silver nanoislands were 
different, which is shown in the SEM image in Fig. 2D. This variation in 
size and distance between them affects the incoming EM radiation. 
However, in the FDTD simulation, only the effects of silver nanoislands 
and nanospheres were considered in the ideal state. 

3.4. Measurement of SERS activity 

Herein, an as-fabricated sample of coccinellaseptempunctate-like 
silver nanoparticles (Ag NI@Ag NSs) was used as a SERS probe, and 
Rhodamine B (Rh B) was used as a Raman probe to measure the SERS 
enhancement in Ag NI@Ag NSs. Different substrates calcined at 340, 
380, 420, and 440 ◦C were immersed for 2 h in Rh B solution with 10− 6 

M concentration to obtain the optimal SERS substrate with the highest 
sensitivity, and Raman spectra are obtained after drying, as shown in 
Fig. 5a. There was no obvious correlation between the strength and 

Fig. 3. The (a) Mapping image, (b) XRD, (c, d) HRTEM image of AgNI@AgNSs.  

Fig. 4. The finite difference time domain (FDTD) method is used to calculate the electric field distribution of the combination of Ag nanoisland and Ag nanosphere on 
the quartz substrate under the excitation of 532 nm: (a) and (b). 
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calcination temperature. When the temperature was 420 ◦C, the Raman 
strength was the highest, that is, the sensitivity was the highest. This 
proved that the formation of coccinellaseptempunctate-like silver 
nanoparticle (Ag NI@Ag NSs) structures improved the SERS sensitivity. 
The 1647 cm− 1 band was selected as the analytical marker, as this band 
intensity was more sensitive to RhB concentration with lower back
ground noise [37]. Raman mapping was performed on the surface of the 
Ag NI@Ag NS substrate (15 μm × 15 μm), and we measured 120 × 60 
points in the SERS substrate (Fig. 5b). The matrix was also treated with 
1 × 10− 6 M Rh B solution. Raman mapping is based on the spectral 
intensity at a given wave number, showing regions of different colors 
according to the peak intensity of Rh B at 1647 cm− 1. In Fig. 5b, the 
locations of the bright yellow area have the strongest SERS performance, 
whereas the locations of the black area have a relatively low SERS 
performance. The bright yellow areas are evenly distributed, occupying 
most space as shown in Fig. 5b. Raman mapping revealed the good 
reproducibility of the Ag NI@Ag NS substrates from a microscopic point 
of view. We successively obtained the Raman spectra of Rh B molecules 
at a concentration in the range of 10− 6 M to 10− 10 M on Ag NI@Ag NSs 
to determine the sensitivity of Ag NI@Ag NSs as SERS probes, as shown 
in Fig. 5c. The results show that the Ag NI@Ag NS substrate has a good 
response to 10− 10 M Rh B. Fig. 5d shows the linear relationship between 
intensity and concentration of typical Rh B characteristic peak at 1647 
cm− 1. The curve equation is lg I = 2.879 + 0.18845 × (lg c), and the 
correlation coefficient is 0.9841. 

To measure the enhancement of the Raman signal of Rh B, the 
following formula was used [44]: 

EF = [(ISERS) / (INormal)] × [(NNormal) / (NSERS)]. (1) 

The calculated results indicated that the SERS EF of Rh B in the Ag 
NI@Ag NSs structure can be estimated to be 108 (in the Supporting In
formation). Table 1 compares the SERS EF reported in the literature and 
our work on Ag NI@Ag NSs. 

3.5. Properties and identification mechanisms of Ag NI@Ag NSs for 
PETA 

A 10–5 M aqueous solution of PETA was chosen as the target mole
cule to estimate the SERS activity of Ag NI@Ag NSs for biomolecules. 
The SERS spectra of the pure PETA crystal on a quartz plate were 
collected for comparison (Fig. S8, in the Supporting Information), and the 
main vibration of PETA was confirmed according to the reported study. 
As shown in Fig. 6a, the Raman strength gradually increased with the 
increase of PETA concentration due to its specific adsorption more PETA 
molecular lines specifically adsorbed onto the recognition sites of Ag 
NI@Ag NSs. The relationship between peak intensity at 935 cm− 1 and 
PETA concentration was plotted, and the linear relationship between 
Raman intensity (I) and logarithm (c) of PETA concentration in the 
range of 5 × 10− 7 - 1 × 10− 5 mol/L was obtained (Fig. 6b). The curve 
equation is I = 148.12 + 20.96 × (lg c), and the correlation coefficient is 
0.9918. To further verify the adsorption mechanism of PETA onto by Ag 

Fig. 5. (a) SERS spectra of Rhodamine 
B (Rh B) (10− 6 M) with different tem
perature Annealing process in the range 
of 340 ◦C to 440 ◦C, and the immersion 
time was the same. (b) Raman mapping 
(15 μm × 15 μm) of the SERS substrate 
treated with the 1 × 10− 6 M Rh B so
lution (the peak, 1647 cm -1). (c) SERS 
spectra of Rh B with different concen
trations in the range of 10− 6 M to 10− 10 

M, and the immersion time was the 
same. (d) The intensity of the Raman 
characteristic peak of Rh B at 1647cm− 1 

varies from 10− 6 to 10− 10 M (on a log
arithmic scale) as a function of molec
ular concentration, corresponding to 
(c).   

Table 1 
Comparison of SERS EF between different samples with our work of Ag NI@Ag 
NS.  

Sample Dye SERS EF Refs. 

Ag thin film Crystal violet 5.3 × 105 [38] 
Ag NP on TO-Nanopaper Rh B 1.46 × 109 [37] 
Cabbagelike (111) Faceted Ag 

Crystals 
Rhodamine 6G 3.5 × 106 [30] 

Ag NP on PDMS Rhodamine 6G 109 [39] 
Ag NP on planar Si Rhodamine 6G 108 [25] 
Ag/PDA/ZnO@GMF Rh B 1010 [40] 
Ag@AAO DHPCs Rh B 1.3 × 106 [41] 
ZnO-NC/Au/Ag152 Rh B 6.48 × 109 [42] 
Ag NPs/filter paper Rhodamine 6G 1.42 ×

1010 
[43] 

Ag NI@Ag NSs Rh B 108 This 
work  
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NI@Ag NSs, the SERS spectra of three other types of amino acids was 
collected. As shown in Fig. 6c, the main characteristic peaks of amino 
acids (1051 cm− 1 (CO, OH) and 1070 cm− 1 (CN)) could be observed and 
it was therefore proposed that the mechanism of chemical enhancement 
was mainly caused by the chemical adsorption of Ag-N bond [45]. 

Recognition specificity is an important index for sensors. To test the 
selectivity of the Ag NI@Ag NSs sensor in complex environmental 
samples, several components in deep-sea fluids, including cations, an
ions, metabolites, amino acids, and deep-sea in-situ samples (hydro
thermal vent fluids and cold seep fluids) have been selected as 
interfering substances and used in conjunction with PETA. Compared 
with the concentration of PETA, more than 5 times the concentration of 
interference substances were introduced into the solution. As shown in 
Fig. 6d, these interfering substances and blank samples caused almost 
equal intensities on Raman signals response at 935 cm− 1. These results 
demonstrated the excellent selectivity of this sensor, and it was suitable 
to be utilized in complex systems. Meanwhile, in the mixture of PETA 
and phenylalanine, the characteristic peak of PETA (935 cm− 1) and the 
characteristic peak of phenylalanine (1004 cm− 1) were detected 
simultaneously (Fig. 6d, red curve). It could be further proved that the 
recognition mechanism of PETA and amino acids by the substrate was 
due to the chemisorption of Ag-N bond. 

3.6. Application of the Ag NI@Ag NSs sensor in the simulated 
environment 

The feasibility of actual deep-sea detection was explored using 
standard seawater (China Series Standard Seawater (GBW(E) 130011), 
Salinity 40.004, was purchased from were purchased from Standard In
formation Network) as the solvent to prepare 1 mM PETA solution and 
adjusting the pH ≈ 7.9 (simulating the pH at a cold seep. A ZEISS EC 

Epiplan 61x/1.0 water immersion objective lens was used. The effect of 
high pressure on SERS performance was explored using a micro-visual
ized low-temperature high-pressure reaction chamber (Fig. S6) to conduct a 
cold-seep high-pressure simulation experiment. The pressure was set at 
5, 8, and 11 MPa, and the PETA concentration was 1 mM (considering 
the attenuation of the Raman signal after passing through the sapphire 
window and the content of PETA in biological cells reported in some 
papers). The pressure-dependent SERS spectra were measured under 
532 nm laser excitation. The results are shown in Fig. 7a, b. Under high 
pressure, there was still a good SERS effect; the characteristic peak of the 
target became increasingly obvious with the increase in pressure. This 
was because the increase in pressure led to a decrease in the distance 
between the molecules to be measured and the SERS base, thereby 
increasing the SERS enhancement effect. Raman mapping was per
formed on the Ag NI@Ag NSs substrate (150 μm × 150 μm, 120 × 60 
points) for 1 mM PETA at 11 MPa (Fig. S7), showing regions of different 
colors according to the peak intensity of at 935 cm− 1. Raman mapping 
revealed good reproducibility at high pressures from a microscopic 
perspective. The success of the solution environment simulation exper
iment further confirms the feasibility of SERS detection in the deep sea. 

4. Conclusions 

In conclusion, a coccinellaseptempunctate-like (silver nanospheres 
coated with silver nanoisland structures, Ag NI@Ag NSs) SERS substrate 
was prepared using a simple annealing process. Researches show that 
the nanogaps between the nanosphere and the nanoisland are the main 
distribution area of “hot spots”. The SERS substrate showed excellent 
crystal orientation, which significantly increased the chemical 
enhancement of the substrate. Using Rh B as the signal molecule, we 
tested an enhancement factor of 108. Furthermore, the Ag NI@Ag NSs 

Fig. 6. (a) SERS spectra of phosphoethanolamine on Ag NI@Ag NSs; (b) Calibration curve of phosphoethanolamine; (c) Comparison of SERS spectra of L-tryptophan, 
L-threonine and N-acetyl-L-phenylalanine based on Ag NI@Ag NSs (1 × 10− 6 M); (d) Typical SERS spectra of phosphoethanolamine (10− 6 mol/L) and inter
fering substances. 
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showed good selectivity, reproducibility, accuracy, and the target 
molecule PETA was detected at 11 MPa. The SERS substrate has been 
processed with high-temperature annealing and has strong oxidation 
resistance, which can overcome the difficulty of pressure in cold seeps, 
providing a basis for deep-sea in situ detection. 

To the best of our knowledge, this is the first study on silver nano
spheres coated with a silver nanoisland morphology by adjusting the 
annealing temperature of noble metal nanoparticles. Single crystal- 
oriented noble metal nanoparticles were obtained to realize SERS 
enhancement. Although the prepared substrate had excellent EM and 
CM effects, the SERS effect was limited owing to the great difference in 
morphology and large spacing between nanoislands. This provides ideas 
for further improvement. 
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