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TOPICAL REVIEW — Low-dimensional nanostructures and devices

Unique electrical properties of nanostructured diamond cones∗
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The preparation and electrical properties of diamond nanocones are reviewed, including a maskless etching pro-
cess and mechanism of large-area diamond conical nanostructure arrays using a hot filament chemical vapor deposition
(HFCVD) system with negatively biased substrates, and the field electron emission, gas sensing, and quantum transport
properties of a diamond nanocone array or an individual diamond nanocone. Optimal cone aspect ratio and array density
are investigated, along with the relationships between the cone morphologies and experimental parameters, such as the
CH4/H2 ratio of the etching gas, the bias current, and the gas pressure. The reviewed experiments demonstrate the possi-
bility of using nanostructured diamond cones as a display device element, a point electron emission source, a gas sensor or
a quantum device.

Keywords: diamond, nanocone, quantum device

PACS: 81.05.ug, 81.07.–b, 73.63.Rt DOI: 10.1088/1674-1056/22/9/098107

1. Introduction

Low-dimensional nanostructured materials such as

nanopillars, nanowires, nanocones, etc., especially those that

can be fabricated into certain ordered structures, are of great

interest, considering their great potential in optics, electronics,

biosensors, and thermaology.[1–3] It is well known that conical

nanostructures have many outstanding advantages and have

been suggested in designs of many instruments, such as ther-

monuclear fusion control devices, absorbers in solar cells, cold

cathodes in field emission displays, and some quantized elec-

trical devices.[4–7] Such applications, however, require mate-

rials possessing excellent properties with multiple functions.

Conical nanostructured diamond has many outstanding advan-

tages and can be used to construct nanodevices with high func-

tionality for many fields. Diamond has the highest hardness,

the highest thermal conductivity, outstanding chemical inert-

ness, wide band gap semiconduction (∼ 5.5 eV), and negative

electron affinity (NEA). So the interest in diamond nanocones

with a high aspect ratio for the above-mentioned application

areas is unsurprising, particularly for electrical devices. In

this work, the relationships between the cone morphologies

and experimental parameters, such as the CH4/H2 gas ratio,

bias current, and gas pressure are investigated.

2. Preparation of diamond nanocone arrays
Generally, diamond cones can be fabricated by growing

diamond into holes patterned on silicon or SiO2 substrates by
micro-fabrication techniques including photo-lithography, re-
active ion etching (RIE), wet etching, etc.[8,9] However, the
controlled fabrication methods and the understanding of the
formation mechanisms of nanoscale conical structures are nec-
essary due to the application requirements for nanodevices.
Recently, a novel method for fabrication of diamond cone ar-
rays was realized by combination of focused ions beam (FIB)
milling technology and diamond filling, and as-formed dia-
mond morphology can be well controlled by the shape of pre-
milled holes on silicon using an FIB system, while the den-
sity of cone arrays can be controlled by the patterning den-
sity of the array of holes.[10] On the other hand, dry plasma
etching technology without pre-patterning for formation of di-
amond cone arrays has been studied using different plasmas,
such as oxygen and hydrogen, in CVD systems,[11,12] which
has a particular potential in the formation of large-area cone
arrays, and has been verified as an economical technique for
diamond, even though no adequate account of the underlying
cone formation mechanism has been given so far.

We developed a novel maskless method to fabricate large-
area diamond nanocone arrays with an ordered orientation,
a controlled density and a uniform cone angle.[13] As-grown
diamond films are placed into a hot filament chemical va-
por deposition (HFCVD) chamber equipped with a direct cur-
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rent (dc) negatively biased voltage system; CH4 is added
to the etching gas H2 to improve the plasma etching inten-
sity and efficiency. Figure 1 shows an SEM image of typi-
cal diamond cone arrays formed under the following exper-
imental conditions: CH4/H2 ratio of 1.5/98.5, gas pressure
of 5 Torr (1 Torr = 1.33322×102 Pa), substrate temperature of
900 ◦C, etching duration of 1 h, and a glow discharge current
of 100 mA. It can be clearly seen that the as-formed cones
show an identical orientation, a uniform cone angle of about
27◦, and a height of about 3 µm; the cone density is about
2×108 cm−2. Figure 2(a) is the full TEM image of a single
cone in low magnification; an apex radius of about 1 nm is ob-
tained as shown in the inset. Figure 2(b) is the sidewall high-
resolution transmission electron microscope (HRTEM) image
of a single cone; we can find that the diamond cone is coated
by a 1-nm to 2-nm amorphous carbon layer and has a poly-
crystalline diamond core with the main atom lattice spacing of
0.22 nm, related to the diamond (111).[14] No metal or other
particle serving as a mask on the cone top is detected from the
TEM image.

2 mm

Fig. 1. Typical SEM image of as-formed diamond cone arrays.[13]

(a) (b)

200 nm

Fig. 2. TEM characterizations of diamond cone: (a) the full image in
low magnification inset with an HRTEM image of the cone tip, and (b)
HRTEM image of the cone sidewall.[13]

This result indicates that diamond cone arrays with uni-
form morphology can be formed by using CVD plasma etch-
ing, the as-formed cones have a uniform cone angle, height,
and distribution. For the formation of diamond cones in
HFCVD plasma, a self-organized selective sputtering mech-
anism has been proposed.[13] During the initiation of cone for-
mation, the surface morphology of as-formed diamond film

has played a key role. Hillocks are randomly distributed all
over the surface. Under the ion bombardment in the plasma,
the removal of material is faster at the side of a hillock than
at the top, because the ion-sputtering yield is always higher
at an oblique incident angle.[15] As a result, the initial surface
morphology is enhanced because of the difference in the sput-
tering rate. With the advance of further ion sputtering, cone
geometry is gradually formed and sharpened. Longer sput-
tering will cause partial removal of the diamond film, result-
ing in a reduced cone density. The addition of methane gas
(CH4) in the plasma can greatly enhance the sputter-etching
process because the methylic ions have a larger mean free path
length, and therefore, higher mean energy for sputtering.[16]

The methylic ions will be dominant in the etching of diamond
even though their densities are much less than that of H+ ions
in the plasma. Meanwhile, the deposition of amorphous car-
bon occurs simultaneously with the etching process, and these
processes finally form a very thin coating on the outer layer of
each diamond cone.

Based on the above studies, we know that the arrays of di-
amond cones with controlled morphologies, such as the cone
angle, the cone height, and the array density, can be obtained,
which provides a promising method of nanocone array fabri-
cation for applications in large-area field emitter, gas sensors,
quantized nanodevices, etc.

3. Field emission from diamond nanocone ar-
rays
Diamond is an ideal material for electron field emission

due to its negative electron affinity, outstanding chemical inert-
ness and maximal thermal conductivity. Electron field emis-
sion from diamond has been intensively studied in the last
decade.[17,18] However, most of the reported diamond emitters
are planar diamond films, irregular ion-etched diamond films
or non-uniformly diamond coated silicon tips, all of which re-
veal inconsistent or poor emission behavior. A good candidate
for field emitter arrays should be a structure of high aspect
ratio nanostructures in an array of moderate density, because
a high aspect ratio pillar and cone structure can introduce lo-
cal field enhancement effect onto the emitting surface,[19] but
a high density of emitters is not beneficial for the improve-
ment of field emission due to the field-screening effect.[20–22]

Some researchers have predicated that the field emission will
become maximal when the spacing is twice as large as the
height of the emitters.[20] However, the field emission proper-
ties of arrays of regular high aspect ratio diamond tips arrays
and the effect of emitter density on the field-screening have
rarely been studied, due to the difficulty of preparing those
emitters with different densities.

We measured the field emission of as-formed diamond
cone arrays with different densities and compared them with
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the performance of unetched diamond films. The current den-
sity versus electric field (J–E) and Fowler–Nordheim (FN)
plots of all samples are shown in Fig. 3. In Fig. 3(a), it is ob-
vious that as-formed diamond cone arrays formed by CH4 and
H2 plasma etching have much-enhanced field emission com-
pared with unetched diamond films, because of the high field
enhancement factor of sharp diamond cones and the amor-
phous carbon outer layer in the diamond cones. The cone ar-
rays formed by pure H2 plasma etching also show enhanced
emission, but they have poorer field emission performance
than the cones formed by CH4/H2 plasma etching, owing to
their lower aspect ratio, higher cone density, and lack of outer
amorphous carbon coating. The amorphous carbon layer can
increase the surface electrical conductivity and provide a path-
way for electron-hopping conduction through the defect bands
within the wide band gap of local sp3 sites so as to enhance
the field emission ability of the as-formed diamond cones. In
general, the FN plots are nearly linear, indicating that elec-
tron field emission from these as-formed diamond cone ar-
rays basically follows the FN law. However, some FN plots
of as-formed diamond cone arrays are somewhat nonlinear, as
shown in Fig. 3(b). This nonlinear FN plot is often observed
in some carbon-based materials. Usually, this plot has to be
fitted with two straight lines instead of one, each of which can
derive its own field enhancement factor (â-value), suggesting
that two different types of emission sites are contributing to
the total emission current.[16] It can be seen from Fig. 3(a)
that the field emission of diamond cones depends on its
cone density, diamond cone arrays with higher density (about
2×108 cones/cm2) or lower density (about 2×106 cones/cm2)

have higher threshold fields than those of the cone arrays with
medium density (about 1×107 cones/cm2). And the emis-
sion current densities are also much lower than those of the
cone arrays with medium density. The slower current in-
crease of diamond film before etching is similar to cone ar-
rays with density of 2×108 cones/cm2 and the cone arrays
formed by pure H2 plasma etching with cone density larger
than 1×109 cones/cm2, and the quicker current increase of
cone arrays with density of 2×106 cones/cm2 is similar to that
of 1×107 cones/cm2. The above trends are closely related to
the field-shielding effect that exists in emitters with a larger
emitting site density and to the field enhancement factor deter-
mined by the geometrical shape of cones. These phenomena
can be attributed mainly to the appropriate balance between
the field-shielding effect and the number of field emission
sites. High density arrays of cones will lead to a strong field-
shielding effect,[20] which reduces the surface field of each in-
dividual cone, resulting in low emission current. Low den-
sity arrays of cones will have fewer emission sites. Their total
emission current is lower, despite a weaker field-shielding ef-
fect. There is an optimum cone density at which the maximum

emission current can be obtained. In addition, when the cone
density of one sample is close to that of another, the field en-
hancement factor will determine the field emission property of
the sample, that is, a higher field enhancement factor leads to
better field emission.
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Fig. 3. The J–E characteristics (a) and FN characteristics (b) for the
unetched diamond film, diamond film etched in H2 plasma, and as-
formed diamond cone arrays etched in CH4/H2 plasma with different
cone densities: 1×107 cones/cm2 (curve a), 2×106 cones/cm2 (curve
b), 2×108 cones/cm2 (curve c), H plasma etching (curve d), diamond
film (curve e).[16]

4. Field emission from an individual diamond
nanocone
Among many applications of vacuum microelectronics,

there is a great demand for cold-cathode electron point sources
in a variety of scientific instruments. For example, nanoscale
probe instruments, which are based on cold-cathode electron
point sources, are vital for applications such as ultrahigh res-
olution electron-beam lithography, electron holography, field
electron emission (FEE) microscopy, etc.[23] The key factor
for the fabrication of an efficient electron point source is the
formation of an atomically sharp field-emission tip. Although
remarkable progress has been made in the last few years in the
development of high efficiency point emission sources based
on either an individual carbon nanotube emitter or a silicon
cone emitter coated with materials of negative (or low) elec-
tron affinity such as diamond, diamond-like-carbon, etc.[24,25]

However, due to the relatively high work function of carbon
nanotubes and the low aspect ratio geometry of coated Si emit-
ters, their emission capability is insufficient to work as a single

098107-3



Chin. Phys. B Vol. 22, No. 9 (2013) 098107

electron point source. Therefore, the ultimate goal is to make
a high-aspect-ratio point-electron-emitter directly from a ma-
terial with negative electron affinity, such as the diamond.

In our research, the FEE properties of an individual di-
amond cone have been studied using a customized double
probe scanning electron microscope (SEM) system at a cham-
ber pressure of about 10−7 Torr. The SEM system is equipped
with a microsized anode probe and is more efficient than the
conventional anode panel systems in collecting locally emitted
electrons.[26] The anode probe has a tip radius of about 1 µm
formed by chemical etching of a tungsten wire, and the dis-
tance between the anode probe tip and a diamond cone can be
adjusted to be as small as 0.1 µm. The emission current was
measured by a picoampere meter upon applying a dc voltage
between the anode probe and the silicon substrate.
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Fig. 4. The I–V plots of an individual, isolated diamond cone before
[plot a] and after surface stabilization [plot b], with inset SEM im-
ages: (a) showing FEE measurement system (anode probe and a dia-
mond cone) and inset high resolution SEM images of the diamond cone
before (b) and after (c) FEE measurement.[27]

An as-formed emitter generally needs surface stabiliza-
tion by means of Joule heating to establish a stable electron
emission.[24] Figure 4 shows the I–V plots of an individual di-
amond cone before and after the surface stabilization process.
The tip-probe measurement setup is shown in the inset (a).
Before surface stabilization, the emission current begins to
rise quickly at applied voltage of 24 V. At applied voltage of
100 V, a high emission current of about 80 µA is obtained, as
shown by the plot a. In this experiment, the electrical field at
the cone tip is 25 V/µm at the voltage of 10 V between the
diamond cone and the anode probe, which is determined us-
ing the equation: βE =V/Rtip.[28] The emission current from
the individual cone is about 1×10−2 µA at 25 V/µm. The
field enhancement factor β for a conical structure is expressed:
2.1(h/r+0.8)0.73,[29] and it is calculated as 325 for the present
individual diamond cone, assuming a cone height of 5.1 µm
and cone apex radius Rtip of 5 nm. At the same electrical field
(25 V/µm), Zhang et al.[12]reported an emission current den-
sity of about 102 mA/cm2 from single-crystal diamond cone
arrays, from which the emission current of a single diamond

cone can be estimated as 5×10−4 µA, assuming a cone den-
sity of 2×108 cm−2. This indicates that the emission proper-
ties of an isolated individual diamond cone are superior due
to the exclusion of the field-shielding effect. When the emis-
sion is measured several times, its emission ability is degraded
a little but very stable, (see plot b in Fig. 4). The high emis-
sion ability of an as-formed diamond cone can be attributed to
the high-aspect-ratio conical structure which introduces an en-
hanced field at the cone tip; and the a–C coating layer which
provides pathways for electron hopping conduction through
the defect bands within the wide band gap of local sp3 sites
in the cascaded sp2–sp3–sp2 (metal–insulator–metal) surface
nanostructure.[30] The results show good promise for these di-
amond cones to be used as individual point electron sources.

5. Gas sensing properties of diamond nanocone
arrays
The notable performance of diamond based sensors in the

detection of reducing gases (NH3, CO, H2, etc.) and oxidiz-
ing gases (O2, NO2, HCL, etc.) have been achieved.[31,32]

However, limited sensitivity has severely blocked their further
development. It has been suggested that the enlargement of
the effective sensing area might solve this problem.[33] Nanos-
tructured diamond materials, such as diamond films with con-
ical protrusions, will satisfy this requirement well, due to their
greatly enhanced surface aspect ratio.

We studied the gas sensing properties of diamond
nanocone arrays. First, the hydrogenation of diamond film
and as-formed diamond nanocone arrays in H2 ambience is
performed at the temperature of 800 ◦C for 0.5 h. Before the
measurement of the gas sensing performance, NO2 and NH3

gases with a volume of 1 mL were injected separately into a
Teflon container (10000 mL), and thus 100 ppm (part per mil-
lion) air-diluted NO2 and NH3 gases were prepared.

The air-ambience current versus voltage (I–V ) character-
istics of the diamond film and diamond nanocone arrays (with
and without hydrogenation) are illustrated in Fig. 5(a). Af-
ter hydrogenation in H2 ambience, the surface conductivity
of as-formed diamond nanocone arrays and diamond film is
increased by about 3–4 orders, which indicates the forma-
tion of a surface conductive layer. For both diamond film
and nanocone arrays, rectifying I–V properties are detected,
indicating that Schottky barriers are formed in the metal–
semiconductor (diamond-gold wire) contacts. The current ver-
sus measurement time (I–t) plots of diamond film and dia-
mond nanocone arrays, both in air-diluted NH3 and NO2 am-
bience, are shown in Figs. 5(b) and 5(c). From Fig. 5(b), one
can see that the current is decreased by 6.1 times for diamond
nanocone arrays in NH3 ambience and it is decreased by 2.9
times for the diamond film. We can also see that for the di-
amond nanocone arrays the current is increased by about 4.9
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times in NO2 ambience; for diamond film the current is in-
creased by about 3.1 times, as shown in Fig. 5(c).
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Fig. 5. Sensing properties of a hydrogenated diamond film and a
nanocone array at room temperature, I–V characteristics in air before
and after hydrogenation (a), NH3 sensing I–t plot (b), and NO2 sensing
I–t plot (c).[34]

As to the sensing mechanism of the diamond gaseous
sensor, it was recently proposed that a surface hydrogenation
layer with greatly increased p-type conductivity can play a
key role.[35] It has been proposed that hydrogenation could
raise the valence band maximum of diamond sufficiently to
a place just above the chemical potential of a mildly acidic
water layer physisorbed at the surface, and thus produces p-
type conductivity.[36] Due to the surface band bending and the
formation of an ultrathin (about 5 nm) conducting layer on
an insulating diamond substrate, a two-dimensional (2D) hole
gas with discrete subbands that will be presented even at room
temperature.[37] In the case of diamond nanocones, the further
size confinement (cone tip size is about 2 nm as shown in SEM
characterization) of the original 2D hole gas due to the forma-
tion of a conical structure will introduce further separated hole

quantum well states. Carrier transformation between the ad-
sorbed gas and the discrete hole states may be facilitated due to
the lower transformation barrier for different subbands. When
the p-type diamond surface contacts NH3 gas, the electrons
are transferred from the adsorbed aqueous NH3 into the dia-
mond nanocone to equalize the chemical potentials (or Fermi
levels).[38] Then, the hole concentration is reduced, and conse-
quently, the conductivity of the diamond is reduced. Whereas,
when the diamond contacts NO2 gas, electrons are transferred
from the diamond surface into the adsorbed aqueous NO2, and
the conductivity of the diamond is increased accordingly.

6. Quantized tunnel current of diamond
nanocones
The nanocontact between a metal and a semiconductor,

which has attracted attention not only in terms of its scientific
importance but also its applications in quantum device archi-
tectures, has been investigated in various systems. Some pre-
vious studies have investigated quantum confinement effects
via the metal contacts on a homogenous semiconductor sub-
strate and a semiconducting nanostructure such as a quantum
well and two-dimensional electron gas (2DEG), both in exper-
iment and in theory.[39,40] However, research on nanocontact
systems between metals and wide-band gap semiconductors
with high functionality is still in its infancy. The difficulty
of fabricating reliable metal-semiconductor nanocontacts has
thus far limited the experimental study of such nanocontacts.

In our work, the electron transport properties of a
nanocontact between a metal W probe and an individual di-
amond nanocone have been measured. SEM images of the
nanocontact measurements aare shown in Fig. 6. A three-
dimensional (3D) moveable W probe can contact different po-
sitions of an individual diamond nanocone, from top to bot-
tom.

The I–Va curves at room temperature (293 K) for different
contact configurations between the W probe and the diamond
nanocone are plotted in Fig. 7(a). Figures 7(a1)–7(a2) cor-
respond to the contacts of the W probe with the nanocone at
the top and midway. The measurement of the diamond film is
also presented as a reference, the blue line shown in Fig. 7(a3),
corresponding to the contact of the W probe with the diamond
film, is the fitted curve based on a tunneling mechanism as
suggested in the following discussion. Typical rectifying be-
havior was found in all three measurements, with forward and
reverse bias. For the contact of the W probe with nanocone top
[Fig. 7(a1)], current jumps occur at a forward bias of 7.6 V,
19.3 V, and 40.6 V. Comparatively, for the contact between
the W probe and the diamond nanocone midway [Fig. 7(a2)],
such jumps cannot be clearly identified, as was the case of the
contact between the W probe and the diamond film surface
[Fig. 7(a3)].
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(a)

(b)

Fig. 6. SEM images of contact configurations of the W probe at the
middle (a) and tip (b) of an individual diamond nanocone.

The I–Va curve of the nanocontact between the W probe
and the diamond nanocone tip can be understood as the com-
bination of a smooth background current and some discrete
current jumps. The smooth background of the I–Va curve at
forward bias combined with the curve at reversed bias pro-
vides us the information about the tunneling barrier.

The temperature dependence of these discrete current
jumps was also investigated by changing the substrate temper-
ature. The I–Va characteristics of the diamond nanocone tip at
elevated temperature are shown in Fig. 7(b), the dashed lines
shown in Fig. 7(b) are the curves numerically fitted by using
the tunneling current at 293 K from different discrete hole lev-
els as suggested in the flowing discussion. From Fig. 7(b), the
following results can be obtained: (i) the background current
is enhanced at the elevated temperatures of 393 K and 493 K;
(ii) the current jumps observed at 293 K disappear at elevated
temperatures of 393 K and 493 K.

Here, a tunneling process from discrete hole levels in the
diamond nanocone tip to the W probe is suggested to explain
the as-observed experimental results. The contact between
the hydrogenated diamond nanocone tip and the W probe can
be though of as a quantum point contact (QPC) structure as
illustrated in Fig. 8(a). The hydrogenated diamond tip can
be considered as a quantum dot. The nanocone body be-
neath the tip, which is formed by stacking diamond crystal-

lites with many defects,[28] acts as the other electrode for this
QPC structure. Discrete electron states will be formed due to
the size confinement within the diamond nanocone tip. The
existence of the p-type region is due to the electrochemical
transfer doping effect,[41] which results in upward band bend-
ing at the interface of the diamond nanocone and the W probe.
It should be noted that the W probe could be easily covered
with an oxidized layer several nanometers thick due to air
exposure.[42] That would act as an insulating barrier, which
indicates a metal–insulator–semiconductor (MIS) nanostruc-
ture formed at the contact between the diamond nanocone and
the W probe as shown in Fig. 8(b).
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Fig. 7. (a) The I–Va plots of different contact configurations at forward
(solid lines) and reverse (broken lines) biases at room temperature: (a1)
the contact of the W probe with the diamond nanocone tip, (a2) the
contact of the W probe with the diamond nanocone midway, and (a3)
the contact of the W probe with diamond film. (Blue line is a fitted
curve based on the tunneling model.) (b) The I–Va plots of the contact
of the W probe with the diamond nanocone tip at different tempera-
tures: 293 K (curve a, dashed lines are the fitted I–Va plots based on the
tunneling model); 393 K (curve b), and 493 K (curve c).

At zero bias, most discrete hole energy levels at the dia-
mond nanocone side are above the Fermi level, and they can-
not participate in the tunneling process. Due to the increase
of the applied forward bias on the diamond nanocone, the
Fermi level at the metal side is elevated. As a result, more
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and more quantized hole levels take part in the tunneling pro-
cess, as in the schematic in Fig. 8(c). This produces the current
jumps as observed, appended on the smooth background cur-
rent through a trapezoid surface barrier, as shown in Fig. 7(a1).
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diamond
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Fig. 8. Schematic diagram of nanocontact structure (a) and energy-band
diagrams of the nanocontact with an insulating barrier between the dia-
mond cone tip and the W probe at zero bias (b) and negative (c) bias.

Assuming a QPC structure, spatial confinement will lead
to the quantization of original hole gas. The discrete energy
levels in a quantum dot can be expressed as[43]

En ∝
h2n2

8m∗r2 (n = 1,2,3, . . .). (1)

Here, m∗, the hole effective mass perpendicular to the surface,
is 0.75 me,[38,44] r is the tip radius of the diamond cone, and
h is the Planck’s constant. The averaged tip radius measured
from SEM images yields r ≈ 2.5 nm. The degeneracy of the
discrete states is Nn = n2.

As has been well known, with the increase in the mea-
surement temperature, thermally excited carriers can disturb

the original discrete hole carriers states Planck’s constant, con-
cealing the quantized carrier transport process. Therefore, it is
rather difficult to preserve a well-defined quantum structure at
room temperature. However, in our case, under the assump-
tion of the QPC with a cone tip radius of 2.5 nm, the energy
gap of the first two levels is estimated to be about 0.114 eV
(much larger than the thermal disturbance of about 0.026 eV
at room temperature), so the as-formed quantum states in the
diamond tip QPC structure can be preserved well even at room
temperature due to the rather small confined dimension. Ap-
plying an external electric field is an effective way to extract
hole carriers from the as-formed QW states through the surface
tunneling process. The applied (negative) bias on the W probe
can modulate the position of the Fermi level in the above-
mentioned QPC system and cause new hole energy states in
the QPC structure to contribute to the total tunneling current,
as schematically shown in Fig. 8(c).

The electron transport through the nanocontact is a rather
complicated problem. It is very difficult to find out how the lo-
calized QW states couple to the states of the diamond cone sur-
face through defects of the cone. However, a simple but very
useful formulism was developed in field emission research on
diamond. Similar to the description in Refs. [45] and [46], the
tunneling current can be expressed as

J(V ) = A
m

∑
i=1

NiTt(Ei,V ) f (Ei,V ), (2)

where A is the contact area and Ni = i2 is the number of states
at Ei, f (Ei,V ) is the attempted escape frequency of this energy
level, stemming from the classical expression of the oscillation
frequency of localized states. It can be calculated as[38]

f (Ei,V ) =
eV

2d
√

2m∗hEi
, (3)

with d being the barrier width, assumed to be 1.5 nm, and
Tt(Ei,V ) the tunneling coefficient of the trapezoid barrier from
the i-th subband. In Wentzel–Kramers–Brillouin (WKB) ap-
proximation, the tunneling transmission coefficient Tt of the
trapezoid barrier (with barrier height of ψ1 = χm + Ei + kT
and ψ2 = χm + Ei + kT + e|V |) is a function of the applied
field V[47]

Tt(Ei,V )≈ exp

[
−
√

2
(

8π2m∗h
h2

)1/2

(Ψ1 +Ψ2)
1/2 d

]
. (4)

Here, m∗h is the effective hole mass with value of 0.75 me (me is
the free electron mass),[38] E is the hole energy, and h is Planck
constant, ψ2 = χm +Ei +kT +e|V |/2 is the average tunneling
barrier height at applied voltage V (χm, the barrier height of
the Fermi level, and χm > |V |), k is the Boltzmann constant,
T is the absolute temperature. From the above formulism, it is
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inferred that discrete current jumps can be observed at a cer-
tain applied voltage gap of (Ei−Ei+1)/e.

Assuming that the voltage applied on the nanocontact is
proportional to the total voltage applied to the device, we de-
fine β =V/Va, where V is the voltage applied on the tunneling
contact, and Va is the total voltage on the two metal electrodes.
Then, by a polynomial fitting [by using Eq. (2)] of curve a in
Fig. 7(b), we find that χm = 1.54 eV and β = 0.0106 can well
produce our experiment results shown in Fig. 7(b). In addi-
tion, χm = 1.54 eV can be used to produce the I−Va curves of
diamond film (with β = 0.3), as shown in Fig. 7(a3).

The discrete current jumps can be explained quite well by
considering discrete hole levels, as shown in the fit lines plot-
ted in Fig. 7(b). The observed current jumps at 7.6 V, 19.3 V,
and 40.6 V indicate subband gaps of 0.103 eV and 0.194 eV,
indicating an inter-subband gap ratio of about 3:5. This fits
(E2−E1)/(E3−E2) well, as calculated from Eq. (1).

Thus, the result at the room temperature shown in
Fig. 7(b) can be well explained by employing the above-
discussed tunneling mechanism. At elevated temperature, the
tunneling barrier is decreased, which increases the tunneling
coefficient Tt, as indicated from Eq. (4). Thereafter, the tun-
neling current at elevated temperature will be enhanced. How-
ever, the thermally excited carriers at elevated temperature will
conceal the discrete current jumps observed at room temper-
ature. It seems that no dehydrogenation process occurs at the
surface of the diamond nanocone at elevated temperature, be-
cause no current decrease is observed even at the temperature
of 493 K, which accords well with the results reported by Cui
et al.[48]

7. Conclusions
The electrical properties of ordered diamond cone ar-

rays self-organized under selective ion sputtering, using the
HFCVD system, have been reviewed. The following conclu-
sions can be drawn.

(i) Diamond cones with different aspect ratios and cone
densities can be formed by HFCVD plasma etching with
CH4/H2 gas mixture. The addition of CH4 can effectively en-
hance plasma etching. The enhancement is attributed mainly
to the mean energy of methylic ions being higher than that of
H+ ions. The aspect ratio and density of diamond cones can be
controlled by the duration of ion sputtering. Another advan-
tage of adding methane gas to the plasma is the formation of a
thin amorphous carbon coating over the diamond cones, which
is favorable to the enhancement of field emission by providing
a pathway for electron-hopping conduction through the defect
bands.

(ii) Compared with the unetched diamond film, as-formed
diamond cones have enhanced field electron emission with
good emission stability. The diamond cones formed by

CH4/H2 plasma etching have a better field emission property
than those formed by pure H2 plasma etching because of a
more advantageous cone array density and a higher field en-
hancement factor. The threshold field for electron emission
depends on the distribution density of diamond cones because
of the field-shielding effect.

(iii) High emission current can be obtained from an indi-
vidual diamond cone due to its high-aspect-ratio geometry and
the electron conducting pathway provided by the a–C cover-
ing layer with high content of sp2 bonding. After a surface
stabilization process, the diamond cone shows stable emission
properties and a stable work function of 3.35 eV, due to both
the desorption of surface H atoms and the loss of sp3 emitting
sites.

(iv) The chemical gas sensing properties of as-formed
diamond nanocone arrays show that the enhanced gas sens-
ing performance is obtained due both to the carriers tunneling
from discrete hole states in the diamond nanocone and to the
enhanced surface-to-volume ratio of the conical structure.

(v) The observed current-jumps in the I–Va plots directly
reflect the presence of quantum well states in the nanocontact
structure between the diamond nanocone tip and the W probe.
The results also indicate that the number of current jumps
clearly show the nanocontact size and temperature dependence
– that is, with the contact size and measurement temperature
increasing, the jumps are more difficult to observe, due to the
decreased sub-band gap and thermal disturbance. The results
can be theoretically reproduced quite well by using the tun-
neling mechanism of discrete hole levels in the nanocontact
structure.

In summary, the nanostructured diamond cones show
great potentials for the application as unique nanodevices.
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