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Intrinsic monolayer graphene has no band gap between its conduction and valence bands, which limits
its application in many aspects as a semiconductor. Antidot lattices by constructing periodic holes on
graphene have been proved to be an intriguing strategy to introduce a band gap into graphene. Here we
used the e-beam lithography (EBL) combined with the oxygen reactive ion etching (RIE) to fabricate
tunable antidot lattices with different and uniform regularly spaced holes on graphene. In this way,
tunable periodic graphene nanostructures with the dimensions ranging from w20 nm to several hun-
dreds of nanometers can be fabricated by controlling exposure dose and etching time.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Since its experimental discovery in 2004 [1], graphene has
attracted extraordinary attention owing to its many outstanding
physical properties, such as high mobility [2], quantum electronic
transport [3], room-temperature quantum Hall effect [4], high
elasticity [5] and good optical transparency [6]. Many potential
electronic applications of graphene have also been demonstrated or
proposed as transparent conductors [7], spintronic devices [8],
sensors [9,10] and flexible electronics devices [11,12], but the defi-
ciency of band gap around the Fermi level limits graphene appli-
cation as a semiconductor material. However, graphene can show
tunable band gap characteristics by adjusting size, shape, or surface
functionalization [13]. Several kinds of structures have been pro-
posed to introduce a band gap into graphene, such as nanoribbon,
nanomesh and quantum dots [14e16]. Among these structures,
graphene nanoribbon devices are the most commonly used, but
they have relatively low driving currents or conductance for
graphene-based semiconductor devices [17]. Therefore, in order to
improve the performances of the graphene-based devices, the
dense arrays of ordered nanoribbons will be required, which is still
a great challenge.
x: þ86 10 82648198.
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Recently, a strategy of constructing periodic holes on graphene
to form graphene antidot lattices has been extensively proposed.
Graphene antidot lattices consist of the holes of a periodic
arrangement in a graphene sheet [18]. Theoretical calculations have
predicted that antidot lattices can introduce a band gap in gra-
phene, and thewidth of opened gap can be tuned by the size, shape,
and symmetry of both the hole and the lattice cell [19,20]. Some
experimental studies have demonstrated that graphene antidot
lattice have an effective energy gap of 100 meV and field effect
transistors have an ON e OFF current ratio of up to 10, which
demonstrate the utility of these structures for applications [21,22].
In comparison with a single nanoribbon, graphene antidot lattices
can ensure a higher drive current when used as a conduction
channel. More importantly, it is also an important foundation for
constructing graphene superlattices with various nanoscopic
functional units. To widening their application range in electronic
devices, various methods such as lithography, nanoimprinting, and
chemical techniques have been used to fabricate patterning gra-
phene. Comparing other approaches of preparation of graphene
antidot lattices, EBL combinedwith RIE as themost commonly used
method have a lot of advantages, such as accurate alignment ac-
curacy, high pattern resolution, large scale area, good uniformity
and arbitrary control the size of antidot lattice. However, how to
fabricate large-scale, uniform and high-density antidot lattice by
using EBL and RIE is still a great challenge due to the well-known
electron scattering effects in common electron beam photoresists
and the uncertainty during reactive ions etching. In this work, we
carried out EBL and RIE technique to fabricate tunable antidot
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Fig. 1. A schematic illustration of the simple and scalable graphene patterning processes. (a) Natural graphene deposited on SiO2 (300 nm)/Si substrate. (b) A layer of PMMA was
coated on the top of graphene. (c) EBL was used to pattern the PMMA into desired shapes at desired locations. (d) RIE was used to etch graphene/PMMA film. (e) Raman spectrum of
monolayer graphene on SiO2/Si substrate and the inset shows the optical microscope photograph of the graphene.
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lattices, and different and uniform regularly spaced holes on gra-
phene were achieved by controlling exposure dose and etching
time. Finally, large-scale, uniform and dense grid of antidot lattices
on graphene were fabricated successfully. Our results indicate that
accurate control in both exposure dose and etching time is very
desired approach to fabricate tunable antidot lattices nano-
structures on graphene.

2. Experiment

Fig. 1 shows the schematic illustration of our fabricating pro-
cedure. Initially, the monolayer graphene was deposited on
SiO2(300 nm)/Si substrate by mechanical exfoliation [Fig. 1(a)].
Then a layer of PMMA (about 200 nm) was coated on the top of
graphene [Fig. 1(b)]. By changing exposure dose of EBL system
(Raith 150), antidot lattices with different periods were formed on
the PMMA layer [Fig. 1(c)]. After exposure, the sample was devel-
oped in methyl isobutyl ketone: isopropyl alcohol (IPA) (1:3) for
40 s and IPA for 30 s, and then was dried using pure nitrogen.
Finally, short time (around 10e16 s) based on oxygen etching (O2
flow: 100 sccm; Pressure: 100 mTorr; Power: 100 W) didn’t influ-
ence the overall quality of antidot lattices on graphene flake. After
lift-off was done in hot acetone (T ¼ 80 �C) about 5 min in order to
remove photoresist on the graphene [Fig. 1(d)].
Fig. 2. The change tendency of reticular ratio with different exposure dose, and the
reticular ratio (L/D) represents the ratio of hole space (L) to hole diameter (D).
3. Results and discussion

Fig. 1(e) shows a typical Raman spectrum of graphene on SiO2/Si
substrate. There are two prominent peaks (G and 2D) and two small
peaks (G0 and 2D0). Two intense peaks are the G band at 1585 cm�1,
and the 2D band at 2676 cm�1, respectively. The G peak corre-
sponds to the stretching vibration mode, E2g phonon at the Bril-
louin zone center. The 2D peak originates from a two phonon
double resonance Raman process, and it is always present for
crystalline carbon materials [23]. The intensity of 2D peak is more
than twice that those of G peak and the full width at half maximum
(FWHM) of 2D band is 29 cm�1, suggesting that the sample is
monolayer graphene. The Raman G0 band (w2450 cm�1) has a
small intensity, which originates from a combination of the zone
boundary inplane longitudinal acoustic phonon and the inplane
transverse optical phonon modes [24]. The 2D0 peak (w3250 cm�1)
can be assigned to the second harmonic of D peak (w1620 cm�1)
[25], which does not require the existence of defects for its acti-
vation and is always present in the Raman spectrum of high-quality
monolayer graphene. Moreover, it is noted that the D band in the
Raman spectrum is not obvious, indicating the good crystalline
structure of the graphene sample with few defects and impurities.
The inset of Fig. 1(e) shows the optical microscope photograph of
Fig. 3. The measured average etching area percentage of graphene antidot lattices
change with the duration of plasma etching under a given O2-based RIE condition.



Fig. 4. (aed) Different regularly spaced holes on graphene. The top right corner of the image shows the size of antidot lattices. (D, L) represents hole diameter (D) and hole space (L);
(eeh) the histogram of the diameter of antidot lattice with different period distributions.
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the graphene, and it can be seen that the color of the sample is quite
uniform, and it means that the entire sample is the monolayer
graphene.

In the process of fabricating tunable antidot lattices, the expo-
sure dose and etching time are the most important factors in the
process of using EBL combined with RIE. It is well-known that all
electron scattering effects existed in common electron beam pho-
toresists. Thus, it is necessary to control periodicity and neck width
by regulating exposure dose. In regard to the influence of the
etching time, suitable etching time is conducive to the exposure
graphics accurately transferred to the graphene. Only accurately
controlled both the exposure dose and etching time at the same
time, large-scale, uniform and dense grid of antidot lattices on
graphene are obtained. Therefore, we attempt to find out the
optimal parameters of preparing antidot lattices by optimizing
exposure dose and etching time, respectively.

3.1. Exposure dose optimization

For the exposure process, the incident electrons lead to a small
angle scattering after the interaction with PMMA. When the period
space of antidot lattices is approximately equal to the scattering
spread scope, the exposure dose will be a little larger than that of
anticipation at each point. The radiation energy absorbed by each
point in the PMMA is a sum of the direct radiation energy and
surrounding scattered energy. Due to the proximity effect existing
in photoresist exposure [26], actual exposure size of antidot lattices
changes greatly compared with the designed graphic size.

Hence, different periodic antidot lattices are tuned by adjusting
the area dose for different regularly spaced holes on graphene.
Actually, it is found that there was a dependency between reticular
ratio and different exposure dose. The reticular ratio (L/D) repre-
sents the ratio of hole space (L) to hole diameter (D), as shown in
the inset of Fig. 2. It can be seen that exposure dose needs to be
changed with the hole diameter and space (from 90 to 140 mC/cm2).
As the exposure dose increases, the reticular ratio decreases
accordingly. It results from the fact that the high reticular ratio is
equivalent to low exposure density, or less scattered electron en-
ergy. So it is necessary to decrease the direct radiation energy to
achieve the high reticular ratio.

3.2. Etching time optimization

RIE has many outstanding advantages, such as high etching rate,
good anisotropy, large-area uniformity, high-quality fine etching
line and profile. The patterned graphene was affected by many
factors, such as etching time, gas flow rate, RF power and pressure.
Among these factors, etching time is a quite key factor in the pro-
cess of graphic transfer. By optimizing the time factor continuously,
we found that short time (around 10e16 s) based on oxygen
etching didn’t influence the overall quality of antidot lattices on
graphene flake. As we can see from Fig. 3, it is notable that etching
monolayer graphene needs about 12 s in the O2 plasma etching
process. If the etching time is more than 12 s, both the photoresist
residual layer and the underlying graphene are etched away. In
addition, over etching can result in a lateral etching of the hole
diameter in the photoresist as well as the graphene, and thus in-
creases the etching area percentage.

3.3. Fabrication results

It has been demonstrated above that antidot lattices with
different periods can be obtained by optimizing etching conditions
with exposure dose. Fig. 4(aed) show different regularly spaced
holes on graphene that were etched using PMMA (thickness of
200 nm) pattern as masks. The exposure dose is 90, 100, 120 and
140 mC/cm2, respectively. Meanwhile, the duration of plasma
etching under the given O2-based RIE condition is about 12 s. The
space of antidot lattices range from 170 nm down to 20 nm. As we
can see from Fig. 4(eeh), we can find that both the diameter and
space of the holes present very good consistency and uniformity
which is a promising candidate for opening band gap and has po-
tential applications in integrated electronic and optoelectronic
devices. In addition, an increased dispersion of hole diameter of
graphene after etching can be observed with the decrease of the
exposure dose from Fig. 4(e) to Fig. 4(h). This is because a lower
radiation energy leads to an enhanced random scatter effect that
can influence the distribution uniformity of radiation energy and
hence a dispersion of hole diameter. But compared with some re-
ported results, our fabricating graphene antidot lattices nano-
structures have still obvious advantages in uniformity and tunable
hole diameter size.
4. Conclusion

We have fabricated large-scale, uniform and different periods of
antidot lattices on graphene by optimizing exposure dose of EBL
and etching time of RIE, which demonstrated the convenience of
tunable fabricating graphene patterns with high resolution and
high alignment accuracy by EBL combined with RIE. Our experi-
mental results provide a possible route of constructing graphene
superlattices structures. It is also indicated that an optimized
fabrication process can directly benefit the electronic applications
of graphene as well.
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