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Abstract: Nonlinear Compton scattering is an inelastic scattering process where a photon is
emitted due to the interaction between an electron and an intense laser field. With the development
of X-ray free-electron lasers, the intensity of X-ray laser is greatly enhanced, and the signal
from X-ray nonlinear Compton scattering is no longer weak. Although the nonlinear Compton
scattering by an initially free electron has been thoroughly investigated, the mechanism of
nonrelativistic nonlinear Compton scattering of X-ray photons by bound electrons is unclear
yet. Here, we present a frequency-domain formulation based on the nonperturbative quantum
electrodynamics to study nonlinear Compton scattering of two photons by an atom in a strong
X-ray laser field. In contrast to previous theoretical works, our results clearly reveal the existence
of a redshift phenomenon observed experimentally by Fuchs et al. (Nat. Phys.)11, 964(2015)
and suggest its origin as the binding energy of the electron as well as the momentum transfer
from incident photons to the electron during the scattering process. Our work builds a bridge
between intense-laser atomic physics and Compton scattering processes that can be used to study
atomic structure and dynamics at high laser intensities.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The Compton effect is well known for proving the quantum hypothesis of light in 1923
experimentally [1]. Afterwards the impulse approximation (IA) approach to Compton scattering
on bound electrons, which considers the initial electron to be free with the momentum distribution
of the bound state, was put forward by DuMond in his work on the scattering of photons from
solids [2,3]. Since the Compton profile is directly related to the electron momentum distribution,
the electronic structure of atoms, molecules and solids can be probed by X- and γ-ray linear
Compton scattering (LCS) [4–7] and analyzed by IA. For LCS process, Eisenberger and Platzman
verified the validity of nonrelativistic IA for doubly differential cross sections [8], and later
Ribberfors extended IA to relativistic region [9]. Modification of IA and reexamination of the
validity of IA have been the main interests of recent studies [10–12].

With the first use of the Linac Coherent Light Source at the SLAC National Accelerator
Laboratory in 2009 [13], the era of exploring the nonlinear interaction of ultrafast and ultra-intense
X-rays with matters has begun. By using X-ray free-electron lasers [14–17], people have observed
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for the first time extensive nonlinear phenomena at X-ray wavelengths, including the X-ray second
harmonic generation in diamonds [18], two-photon absorption in the hard X-ray region [19,20],
electron femtosecond response to an ultra-intense X-ray radiation [21], and nonlinear Compton
scattering (NCS) of X-ray photons [22]. Among them, the NCS is a particularly interesting
phenomenon because the observed anomalous redshift of the scattered photon can be regarded as
a breakdown of the widely-used IA theory for bound electrons.

There exist a few theoretical studies [23–25] devoted to the NCS processes involving bound
electrons in recent years, but no theoretical work demonstrated the experimental observations by
Fuchs et al. [22]. For example, Krebs et al. [24] developed a nonperturbative approach based on
the time-dependent Schrödinger equation to investigate linear and nonlinear Compton scatterings
of X-ray photons by atoms. However, their results were consistent with the predictions of the
free-electron model and do not support the existence of the redshift found in Ref. [22]. More
recently, Venkatesh and Robicheaux [25] claimed that their theoretical results exhibit a blueshift
compared with the scattered photon energy predicted by the free-electron model during an NCS
process. Therefore, the origin of the anomalous redshift phenomenon observed by Fuchs et al.
[22] is still an open question.

Motivated by the theoretical gap of the NCS mechanism, in this work we will apply the
frequency-domain theory based on the nonperturbative quantum electrodynamics (QED) to study
the NCS processes of bound electrons. This theory has previously been successfully applied in
investigating recollision processes in strong laser fields [26–29]. The advantages of the QED
method in treating the NCS could be shortly provided. Specifically, we will focus on the double
differential probability (DDP) of a NCS process by a bound electron in an X-ray laser field. Our
calculation will clearly demonstrate that in the DDP spectrum of the two-photon NCS, as the
energy of the scattered photon increases, a redshift peak will appear, which agrees with the
observation by Fuchs et al. [22] qualitatively.

2. Frequency-domain theory of the NCS by bound electrons

In the frequency-domain theory based on the QED, the whole system consists of an atom
and radiation fields, where the radiation fields are linearly polarized and quantized, involving
incident and scattered photons in Compton scattering processes. In the following, natural units
(ℏ = m = c = 1) are used throughout unless otherwise stated, where m is the electron rest mass
and c the speed of light. The Hamiltonian of this atom-radiation system is

H = H0 + U + V , (1)

where
H0 =

(−i∇)2

2
+ ω1Na1 + ω2Na2 (2)

is the non-interaction part of the Hamiltonian, with Na1 = (a†1a1 + a1a†1)/2 and Na2 = (a†2a2 +

a2a†2)/2 being the number operators of the incident and the scattered photons, respectively, with
ai(a†i ) being the annihilation (creation) operator for i = 1, 2, and ω1 is the incident laser frequency
and ω2 the scattered photon frequency. U is the atomic binding potential, and V is the total
electron-photon interaction potential that can be written as V = V1 + V21 + V22 with

V1 = eA1(r) · (−i∇) +
e2A2

1(r)
2

, (3)

V21 = e2A1(r) · A2(r), (4)

and
V22 = eA2(r) · (−i∇), (5)
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where e is the elementary charge. Here, we have neglected the term e2A2
2(r)
2 for its weak strength

compared with the above three terms V1, V21 and V22. The vector potentials of the incident
and scattered photon modes are A1(r) = g1(ϵ1a1eik1 ·r + c.c.) and A2(r) = g2(ϵ2a2eik2 ·r + c.c.),
where r is the spatial coordinate of the electron. g1 = (2ω1Vγ)

−1
2 and g2 = (2ω2V ′

γ)
−1
2 with Vγ

and V ′
γ the normalization volumes of the photon modes, k1 (k2) and ϵ1 (ϵ2) are the wave vector

and polarization vector of the incident laser field (scattered photon mode), respectively. By
substituting the expressions of A1(r) and A2(r) into Eq. (4) and Eq. (5), we obtain the explicit
expressions of V21 and V22, where V21 can be split into two terms

V21− = e2g1g2ϵ
∗
2 · ϵ1ei(k1−k2)·ra1a†2, (6)

and
V21+ = e2g1g2ϵ

∗
2 · ϵ

∗
1e−i(k1+k2)·ra†1a†2, (7)

and V22 can be written as
V22 = eg2e−ik2 ·ra†2ϵ

∗
2 · (−i∇). (8)

Here, the terms containing the annihilation operator a2, which make no contribution to NCS
processes, are not included in Eq. (6)-(8).

Since the atom-radiation system can be regarded as an isolated one, the total energy of the
system is conserved during the atom-radiation interaction process and the formal scattering
theory [30] can be applied. The scattering matrix (S-matrix) element [27,28] is expressed as

Sfi = ⟨ψ−
f |ψ

+
i ⟩, (9)

where
ψ±

j = ψj +
1

Ej − H ± iε
Vψj (10)

with j taken to be i or f and ε to be a small positive real number. Physically, ψ+i is the scattering
state at t = 0 which has developed from a pre-collision state ψi in the remote past, whereas ψ−

f is
the scattering state at t = 0 which will develop to a post-collision state ψf in the remote future.
After some algebraic manipulation, the S-matrix element can be recast into

Sfi = δfi − 2πiδ(Ef − Ei)Tfi, (11)

where Tfi is the exact transition matrix (T-matrix) element [31,32] between the initial state |ψi⟩

and the final state |ψf ⟩, and can be written as

Tfi = ⟨ψf |U |ψ+i ⟩. (12)

Substituting Eq. (10) into Eq. (12), we have

Tfi = ⟨ψf |V |ψi⟩ + ⟨ψf |V
1

Ei − H + iε
V |ψi⟩. (13)

Here, the initial state |ψi⟩ = Φi(r) ⊗ |l⟩ ⊗ |0⟩ is the eigenstate of the operator H0 + U with the
eigenenergy Ei = (−EB)+ (l+ 1

2 )ω1+
1
2ω2. Φi(r) is the ground-state wave function of the electron

in an atom with the binding energy EB>0, and |l⟩ and |0⟩ are the Fock states of the incident and
scattered photons with photon number l and 0, respectively. The final state |ψf ⟩ = ΨPf nf ⊗ |1⟩ is
the eigenstate of the operator H0 + V with the eigenenergy Ef = P2

f /2 + (nf +
1
2 + up)ω1 +

3
2ω2,

where Pf is the final momentum of the electron, nf is the laser photon number of the final state
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and up the ponderomotive energy in unit of the incident photon energy. ΨPf nf is the Volkov state
of the electron in the laser field [26]

ΨPf nf = V−1/2
e

∞∑︂
n=−nf

ei[Pf+(up−n)k1]·rJn(ζ , η)∗ |nf + n⟩. (14)

In the above, Ve is the normalization volume of the final momentum of the electron, Jn(ζ , η) =∑︁∞
s=−∞ J−n−2s(ζ)Js(η) is the generalized Bessel function with the arguments ζ = 2

√︂
up
ω1

Pf · ϵ1

and η = up/2, the subscript n represents the number of transferred photons and s is an integer.
The first and second terms in Eq. (13) correspond to one-step and two-step transitions,

respectively. In order to compare with the experimental results [22], we focus on peak positions
of the DDP spectra in this work, where there is no contribution from the two-step transition under
the laser condition of laser intensity being 4 × 1020 W/cm2 with photon energy ω1=9.25 keV,
hence the second term in Eq. (13) is dropped and will be investigated in the future. Therefore,
the T-matrix element for NCS can be expressed as

Tfi = TAA− + TAA+ + TAP, (15)

where the matrix elements of the EMM transitions TAA± are given by

TAA− = ⟨ψf |V21− |ψi⟩

= e2V−1/2
e Λg2ϵ1 · ϵ

∗
2Jq−1(ζ , η)Φi(Pf + k2 + (up − q)k1)

(16)

and
TAA+ = ⟨ψf |V21+ |ψi⟩

= e2V−1/2
e Λg2ϵ

∗
1 · ϵ

∗
2Jq+1(ζ , η)Φi(Pf + k2 + (up − q)k1),

(17)

where Λ =
√︂

upω1
α with α being the fine-structure constant [33,34], and q = l − nf denotes the

number of photons transferred from the incident laser field during the NCS process. And the
matrix element of the LEM transition TAP can be written as

TAP = ⟨ψf |V22 |ψi⟩

= eV−1/2
e g2ϵ

∗
2 · [Pf + (up − q)k1]Jq(ζ , η)Φi(Pf + k2 + (up − q)k1).

(18)

In Eq. (16)–(18), the two-photon NCS processes correspond to q = 2.
Figure 1 illustrates the corresponding schematic diagrams of the three terms in Eq. (15), where

we name TAP the laser-assisted electron-mode (LEM) transition shown in Fig. 1(a), and name
TAA− and TAA+ the electron-assisted mode-mode (EMM) transitions shown in Fig. 1(b) and (c)
respectively. The LEM transition describes the process where the bound electron is ionized after
absorbing several photons from the laser field, and at the same time, a photon of frequency ω2 is
scattered, whereas the EMM transition describes a similar process except that a second photon of
frequency ω1 is either absorbed (TAA−) or emitted (TAA+).

The expression of the DDP for a Compton scattering process can be written as
dWi→f

dω2dΩ
=

∫
2π |Tfi |

2δ(Ei − Ef )
Vγ2

(2π)3
Ve

(2π)3
ω2

2d3Pf , (19)

where dΩ is the differential solid angle of vector k2. To analyze the results more clearly, we may
rewrite the DDP by three parts:

dWi→f

dω2dΩ
=

dWAP

dω2dΩ
+

dWAA

dω2dΩ
+

dWCT

dω2dΩ
, (20)

where the three parts on the right-hand of the equation represent the contributions of EMM, LEM
and their cross term (CT). In the following, we will see how these terms affect the peak position
of the DDP spectrum of two-photon NCS processes.
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Fig. 1. Schematic for the one-step transition of the NCS by a bound electron. The single
straight line represents the bound electron state, the wavy line represents the Fock state of the
incident laser, the combination of wavy and double lines represents the Volkov state, the red
and blue dashed lines represent the scattered photons of frequency ω1 and ω2 respectively,
and the vertex denotes the transition operator V22 in (a), V21− in (b), and V21+ in (c).

3. Redshift

According to the experimental set-up in Ref. [22], the polarization and wave vectors of the
incident laser field are chosen along the x- and z-axis, respectively, while the direction of k2
is characterized by the spherical coordinates (θ, ϕ), as shown in Fig. 2. Since the polarization
direction of the scattered light is not fixed in Ref. [22], we integrate all the polarization directions
of the scattered light in our calculation.

Fig. 2. Geometry of the NCS for initially linearly polarized light. The polarization and
wave vectors of the incoming photons define the xz plane, while the direction of the scattered
photons is characterized by the spherical coordinates (θ, ϕ).

We now calculate the DDP for Compton scattering of two X-ray laser photons by a 1s electron
of Be atom, where the intensity of the incident laser field is 4 × 1020 W/cm2 with the photon
energy of 9.25 keV. In order to compare the DDP spectra with those of the experiment by Fuchs
et al., the wave vector of the scattered photon k2 is fixed in the polarization plane of the incident
laser field defined by k1 (z-axis) and ϵ1 (x-axis), i.e., the azimuthal angle ϕ = 0◦. The DDP of
the NCS at the scattering angles of θ = 89◦ (a), 103◦ (b), 117◦ (c) and 131◦ (d) are displayed
by solid lines in Fig. 3. The vertical lines indicate the scattered photon energy predicted by the
free-electron model [24,25,35]:

ω2 =
qω1

1 + qω1(1 − cosθ)
, (21)

It can be seen from Fig. 3 that the peak positions in the scattered spectra for the four angles
are all red shifted to the scattered photon energy predicted by the free-electron model, which
qualitatively agrees with the experimental observations [22].

In order to explain the results shown in Fig. 3, we present separately the contributions to the
total DDP by tranistions TAP (short-dotted lines), TAA− (dash-dotted lines) and TAA+ (short-dashed
lines) as well as the cross term (dashed lines) in Fig. 3(a)-(d). One can see that the contribution
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Fig. 3. The DDP as a function of the scattered photon energy ω2 at the scattering angle of
θ = 89◦ (a), θ = 103◦ (b) , θ = 117◦ (c) and θ = 131◦ (d). The solid lines represent the
total DDP. The short-dotted lines, dash-dotted lines, and short-dashed lines represent the
DDP determined by T-matrix elements TAP, TAA− and TAA+. The dashed lines show the
distribution of the cross term (CT). The vertical lines are ω2 predicted by Eq. (19). The
scattered wave vector k2 is fixed in the polarization plane defined by k1 and ϵ1. The incident
X-ray laser intensity is 4 × 1020 W/cm2 with photon energy of 9.25 keV.

of TAA+ can be ignored, hence the EMM transition mentioned below refers to the TAA− transition.
For θ = 89◦, although the total DDP is dominated by the LEM transition which is blue shifted to
the energy predicted by the free-electron model, the contribution from the cross term plays a
crucial role in the DDP spectrum, where it increases the probability in lower energy region and
decreases the probability in higher energy region. Thus, a bimodal structure with higher peak
in lower energy of the spectrum appears. For θ = 103◦, 117◦ and 131◦, since the total DDP is
dominated by EMM transition, the peak positions of total DDP spectra are all redshifted to the
energy predicted by the free-electron model.

Furthermore, Fig. 3 shows that the peak positions of the DDP spectrum by EMM transition are
always red shifted to the energy given by the free-electron model, while the peak positions of that
by LEM transition can be either blue shifted or red shifted. To find the reason of these calculation
results, we simplify Eq. (16) and Eq. (18) by replacing the generalized Bessel functions J1(ζ , η)
with J−1(ζ) ≈ C1Pf · ϵ1 and J2(ζ , η) with J−1(η) + J−2(ζ) ≈ C2, as the values of ζ and η are
much smaller than 1 under the present laser conditions (|ζ |<0.034, η = 3.6 × 10−5). Here the
parameters C1 and C2 are constants determined by the laser conditions. Therefore, the matrix
element of EMM transition can be approximated as

TAA− ≈ e2V−1/2
e Λg2C1ϵ1 · ϵ

∗
2Pf cos θϵ1Φi(Pf + k2 − qk1) (22)

with θϵ1 being the angle between ϵ1 and the electron momentum Pf . And the matrix element of
LEM transition can be approximated as

TAP ≈ −eV−1/2
e g2C2(Pf cos θϵ2 − qk1 · ϵ

∗
2)Φi(Pf + k2 − qk1) (23)
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with θϵ2 being the angle between ϵ∗2 and the electron momentum Pf . The DDP spectra by Eq. (22)
(olive short-dotted lines) and by Eq. (23) (magenta dotted lines) are shown in Fig. 4(a)-(b),
consistent with the results by Eq. (16) and Eq. (18), respectively.

Fig. 4. The DDP by the T-matrix element TAA− (red short-dashed lines) and the DDP
by Eq. (22) (olive short-dotted lines), and the DDP by the T-matrix element TAP (blue
dash-dotted lines) and the DDP by Eq. (23) (magenta dotted lines) at θ = 89◦ (a) and
θ = 117◦ (b). The laser parameters and azimuthal angle of the scattered wave vector are the
same as Fig. 3.

We firstly consider the influence of the atomic wavefunction on the DDP spectra, which is
contained in Eq. (22)-(23). By integrating the modular square of the wavefunction over Pf , we
obtain the electron density distribution as a function of the scattered photon energy ω2 and the
scattering angle θ, as shown in Fig. 5. It shows that the peak positions presented by dots on the
density distribution decrease with the scattering angle. This can be explained as follows: By
analyzing the argument of the wavefunction, it can be found that the peak of the electron density
distribution occurs at the momentum transfer Pf = qk1 − k2, as illustrated by the inset of Fig. 5.
Since this momentum transfer increases with the scattering angle, the energy gained by electron
from the scattering process increase inevitably, leading to a decrease of the scattered photon
energy. Moreover, one may find that the peaks of the density distribution are always redshifted to
the prediction of the free-electron model shown by the solid line, where the value of the redshift,
in a range between 127 eV and 153 eV, is close to the binding energy of the 1s state of Be atom.
This indicates that a bound electron can provide a redshift comparable to its binding energy.

Fig. 5. The integral of |Φi(Pf + k2 + (up − q)k1)|
2 over Pf as a function of ω2 and θ. The

dots denote the scattered photon energy corresponding to the peaks at different scattering
angles and the solid line represents the prediction by Eq. (21).

Next, by analyzing other terms in Eq. (22)-(23), we find that the shifts of the peak positions of
the DDP spectra can also be affected by the value of the final electron momentum besides the
binding energy of the electron. Specifically, for EMM transition, the T-matrix element depends
linearly on the value of the electron momentum Pf . According to the energy conservation, Pf
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decreases with the increase of the scattered photon energy, such that the peak positions of the
DDP determined by EMM transition are always red shifted to the prediction of the free-electron
model. On the contrary, for LEM transition, with the variation of the scattering angle, the
dependence of the T-matrix element on the value of the electron momentum Pf is nonmonotonic,
resulting in the non-unidirectional shift of the peak position (may red shift or blue shift).

To illustrate the DDP spectra more comprehensively, the total DDP, the DDP due to EEM
and LEM transitions as a function of the scattering angle and the scattered photon energy at
different azimuthal angles are calculated and shown at the top, middle and bottom of Fig. 6,
respectively. The dots show the peak positions of the total DDP spectra and the solid lines predict
the scattered photon energy by the free-electron model. Firstly, for ϕ = 0◦, one may find that,
the peak positions are below the energy predicted by the free-electron model at θ<90◦, while
the peak position jumps above the prediction of the free-electron model at θ = 90◦, and keeps
blue shifted until θ>94◦. These results can be explained as follows: (1) At θ = 90◦, the total
DDP is determined by LEM transition, since EMM transition and the cross term are both zero
due to ϵ1 · ϵ

∗
2 = 0, where k2 ⊥ k1 and k2 ∥ ϵ1 causes ϵ2 ⊥ ϵ1. Therefore, the DDP spectrum

changing from redshift to blueshift is due to the contribution of the LEM transition which is blue
shifted at θ = 90◦; (2) For θ ∈ 90◦ ± 4◦ except 90◦, the cross term begins to play a role in the
contribution to DDP, as shown in Fig. 3(a) and (b), hence the peak position of the DDP spectrum

Fig. 6. Angle-resolved energy spectra of two-photon NCS by Be. The DDP is shown as a
function of the scattering angle θ and the scattered photon energy ω2 at different azimuthal
angles ϕ = 0◦ (left column), ϕ = 45◦ (middle column) and ϕ = 90◦ (right column). The
total DDP, the DDP due to EMM, and the DDP due to LEM are shown in (a)-(c), (d)-(f)
and (g)-(i), respectively. The solid lines represent ω2 determined by the free-electron model
Eq. (21) and the dots denote the peak positions of the total DDP. The laser parameters are
the same as Fig. 3.
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changes to redshift for θ<90◦ and to blueshift for θ>90◦; (3) For the angles θ<86◦ or θ>94◦,
EMM transition dominates the contribution to the total DDP, hence the peak position of the total
DDP is redshifted to the energy predicted by the free-electron model.

Secondly, for ϕ = 45◦ and 90◦, it shows that the peak positions of total DDP spectra are always
redshifted to the energy predicted by the free-electron model. By comparing the DDP spectra
contributed by EMM (Fig. 6(d)-(f)) with those contributed by LEM (Fig. 6(g)-(i)), one can find
that the total DDP is dominated by the contribution from EMM transition. Owing to the fact that
the peak positions of the DDP of EMM transition are always redshifted, the peak positions of
total DDP will also red shift to the prediction of the free-electron model when EMM transition is
dominant.

We now qualitatively compare our NCS spectra with the experimental results [22] by using
a magnification factor δ. The DDP of two-photon NCS is shown in Fig. 7 at θ = 89◦ with
δ = 2×1016 (a), θ = 103◦ with δ = 3.5×1014 (b), θ = 117◦ with δ = 1.1×1014 (c) and θ = 131◦
with δ = 7.3 × 1013 . In Fig. 7, the curves and geometric symbols represent, respectively, the
theoretical and experimental results under various laser intensities. The consistency between
the theoretical and experimental results is reflected in the following two points: First, the
peak positions in the experiment and our theory are both red shifted to the predicted value of
free-electron model. Second, the dependence of the DDP spectra on the X-ray laser intensity in
our theory is the same as that of the experiment. Especially, in our method, the second-order
nonlinear effects of the laser intensity can be found in the expression of the T-matrix elements of
LEM and EMM, i.e., the term Jq(ζ , η) in TAP and the term ΛJq−1(ζ , η) in TAA− are proportional
to the laser intensity. For the discrepancies between theoretical and experimental results, one
may notice that the experimental spectra are wider than the theoretical spectra, this is probably
because the laser in the experiment cannot be monochromatic and have a certain spectral width,

Fig. 7. Comparison between the DDP of theory and experiment. The DDP for two-photon
NCS by Be at θ = 89◦ (a), θ = 103◦ (b), θ = 117◦ (c) and θ = 131◦ (d). The curves and
geometric figures represent, respectively, the theoretical and experimental values under
different laser intensities. The incident photon energy ω1=9.25 keV. The azimuthal angle of
the wave vector of scattered light is same to Fig. 3. Note: the theoretical values in the same
graph are magnified by the same magnification factor.
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but the spectral width is not considered in our theoretical calculation. On the other hand, the
1-mm-thick Be target is used in the experiments, while we only consider the interaction between
the X-ray laser and a Be atom in our calculation, this may also induce some differences.

4. Conclusion

We have extended the frequency-domain theory to investigate the NCS of two X-ray photons by
an atom. Our theoretical results are in qualitative agreement with the experimental results of Ref.
[22]. By analyzing the EMM and LEM transition matrix elements, we find that the redshift in
the DDP spectra of the NCS process can be attributed to the atomic binding potential and the
momentum transfer from the incident photons to the electron during the collision. Our results
have demonstrated that the redshift can be observed in both forward and backward directions.
All these findings promote significantly the understanding of the nonlinear scattering processes
of bound electrons in X-ray laser fields.
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