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Abstract: We present an analytical treatment of ultra-short pulses propagating in an optical fiber
in the strong nonlinearity regime, in which the interaction between self-phase modulation (SPM)
and group-velocity dispersion (GVD) substantially broadens the input spectrum. Supported by
excellent agreement with the simulation results, these analytical solutions provide a convenient
and reasonable accurate estimation of the peak position of the outermost spectral lobes as well as
the full width at half maximum of the broadened spectrum. We show that our unified solutions
are valid for either Gaussian pulse or hyperbolic secant pulse propagating inside an optical fiber
with positive or negative GVD. Our findings shed light on the optimization of SPM-enabled
spectral broadening in various applications.
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1. Introduction

As an input transform-limited pulse propagates inside an optical fiber, the strong Kerr nonlinearity
results in self-phase modulation (SPM) of the propagating pulse [1]. If the fiber has positive
group-velocity dispersion (GVD), SPM causes a spectral broadening and thus the pulse develops
a positive chirp; removing the chirp by a grating-pair or chirped mirrors generates compressed
pulses with the duration much shorter than the initial input pulse [2,3]. To date, spectral broadening
via fiber-optic SPM followed by a dechirping device has become a standard technology for
nonlinear pulse compression [4]. Such a SPM-enabled spectral broadening can also be used
for pulse compression in a fiber with negative GVD. In this scenario, the input pulse may
experience duration reduction due to higher-order soliton self-compression [5]. Besides pulse
compression, SPM-enabled spectral broadening in optical fibers found wide applications in pulse
regeneration [6–12], ultrafast optical signal processing and measurement [13–15], and low-noise
supercontinuum generation [16–21]. For a transform-limited pulse of bell-shape, SPM broadens
the input spectrum and, at the early broadening state, the spectrum features well-separated
spectral lobes; using optical bandpass filters to select the leftmost or rightmost spectral lobes
produces nearly transform-limited pulses [22]. Varying the coupled pulse energy into the fiber,
the peak wavelength of the leftmost/rightmost spectral lobes can be continuously tuned. Such
an SPM-enabled spectral selection (SESS) allowed generation of ∼100-fs pulses tunable from
825 nm to 1210 nm based on an Yb-fiber ultrafast laser at 1030 nm [22]. We further applied this
method to an Er-fiber laser and the resulting SESS source was tunable from 1300 nm to 1700nm
[23,24].

Due to the complicated interaction between SPM and GVD in the strong nonlinearity regime,
current investigation of SPM-enabled spectral broadening mainly relies on carefully designed
experiments and detailed numerical simulation by solving the nonlinear Schrödinger equation
(NLSE). For example, we applied particle swarm optimization method to SESS and found that
SESS in an optical fiber with the optimized dispersion can deliver SESS pulses tunable in one
octave wavelength range and the conversion efficiency can be as high as 80% [25]. In this paper,
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we present an analytical treatment to the spectral broadening of an optical pulse experiencing
both SPM and GVD (positive or negative). We approximate the pulse during the propagation by
a Gaussian pulse with the duration and B integral varying with the propagating distance. By
incorporating effect of SPM into a properly defined lumped parameter, we find the expression for
pulse duration and B integral, which in turn allows us to obtain closed-form analytical solutions
to quantify the SPM-enabled spectral broadening.

2. Analytical results on SESS with pure SPM

We first consider spectral broadening by pure SPM, which is described by the following simple
equation

i
∂U(z, T)
∂z

= −γP0 |U(z, T)|2U(z, T), (1)

where U(z, T) represents the normalized amplitude, γ is the Kerr-nonlinearity parameter, and P0
is the peak power. Equation (1) has the analytical solution

U(z, T) = U(0, T)exp[−iφNl(z, T)], (2)

where φNl(z, T) = B|U(0, T)|2 accounts for the accumulated nonlinear phase. B = γP0z is
known as B integral. Equation (2) shows that pure SPM does not change the pulse profile while
introducing a time-dependent instantaneous frequency δω(T) = −dφNl/dT , a phenomenon called
chirp. For an input transform-limited pules, such a SPM-induced chirp corresponds to spectral
broadening of the pulse in the frequency domain. For example, we show in Fig. 1 the broadened
spectrum [blue line in Fig. 1(c)] of a Gaussian pulse [Fig. 1(a)] for B=6π. Compared with the
input spectrum [black curve in Fig. 1(c)], pure SPM broadens the optical spectrum by a factor of
20 and the broadened spectrum consists of six well-isolated spectral lobes with the two outermost
spectral lobes (OSLs) being much stronger than the others. When implementing SESS, a suitable
bandpass filter is used to filter the rightmost (or leftmost) spectral lobe, which leads to nearly
transform-limited pulse [red curve in Fig. 1(d)]. Because the OSL has a bandwidth 3 times larger
than the input spectrum, the resulting SESS pulse has a duration of 2.6 (0.6 versus 1.6) times
shorter than the input Gaussian pulse.

Fig. 1. Spectral broadening by pure SPM for an input transform-limited Gaussian pulse
with B = 6π. (a) Gaussian pulse intensity profile, (b) Normalized chirp, (c) Broadened
spectrum, (d) SESS pulse and filtered spectrum (inset).

Apparently, the peak frequencies of the two OSLs determine the frequency tuning range of
the resulting SESS pulses. In 2018, Finot et al. analyzed the pattern of a broadened spectrum
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resulting from pure SPM for different types of input pulses and obtained analytical expressions
for calculating the OSL peak frequency [26]. For an input transform-limited Gaussian pulse
U(0, T) = exp[−T2/(2T2

0 )], they showed that, at the time tm = T0/
√

2 [Fig. 1(b)], the instantaneous
frequency reaches the maximum value

ωm =
√

2e−
1
2

B
T0

. (3)

The OSL peak frequency relative to the center frequency is connected to ωm by [26]

ωP ≃ ωm −
π

2
3

2
ω

1
3
m

T0
2
3
≃ ωm

(︂
1 − 1.19B− 2

3

)︂
. (4)

Finot et al. also showed that, for hyperbolic secant pulse U(0, T) = sech(T/T0), the maximum
instantaneous frequency (MIF) and the OSL peak frequency are given by

ωm =
4B

3
√

3T0
, (5)

ωP ≃ ωm −
π

2
3

2
ω

1
3
m

T0
2
3
≃ ωm

[︂
1 − 1.28B− 2

3

]︂
. (6)

Figure 2(a) depicts the spectral broadening of an input transform-limited Gaussian pulse as a
function of B integral. The two lines represent the normalized MIF, ωmT0 (red line), and the
OSL peak frequency, ωPT0 (black line). To make a direct comparison, we plot in Fig. 2(b) the
normalized OSL peak frequency given by simulations (blue squares) and by Eq. (4) (blue curve)

Fig. 2. (a) Spectral broadening versus B integral. The normalized MIF ωmT0 and the
normalized OSL peak frequency ωpT0 are plotted as red curve and black curve, respectively.
(b) Normalized OSL peak frequency and (c) Normalized spectral FWHM given by simulation
and analytical solution for Gaussian pulse (blue squares versus blue curves) and hyperbolic
secant pulse (red squares versus red curves), respectively.
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as a function of B integral. Also plotted in Fig. 2(b) are the simulation results (red squares)
and the analytical prediction (red curve) by Eq. (6) for the input being a transform-limited
hyperbolic secant pulse. Clearly Eqs. (4)(6) provide an excellent prediction of OSL peak
frequency. According to Ref. [26], ωm denotes the MIF. In this paper we point out that 2ωm
can serve as a good estimation of the full width at half maximum (FWHM) of the broadened
spectrum. This is evidenced by the nearly perfect agreement for the normalized FWHM obtained
by simulation results [solid squares in Fig. 2(c)] and by 2ωmT0 [blue and red curves in Fig. 2(c)]
for both Gaussian pulse and hyperbolic secant pulse.

3. SPM-enabled spectral broadening with GVD

The analytical results [i.e., Eqs. (3-6)] are valid for estimating the OSL peak frequency and
FWHM of an optical spectrum broadened by pure SPM. In reality, fiber GVD needs to be taken
into account, and thus Eq. (1) is replaced by the famous NLSE [27]:

i
∂U
∂z
=
β2
2
∂2U
∂T2 − γP0 |U |2U. (7)

The associated complicated interaction between GVD and SPM gives rise to well-known
nonlinear phenomena, such as optical wave-breaking for positive GVD and higher-order soliton
compression for negative GVD. Dispersion length Ld = T2

0/β2 and nonlinear length LNL =

1/(γP0) are defined to quantify the strength of GVD and SPM. Except under some special
conditions, this NLSE cannot be solved analytically. Nevertheless, many researchers tried to
obtain analytical results using some approximations to reveal the physics behind the complicated
nonlinear interaction. For example, Eq. (7) has been extensively analyzed for weak nonlinearity
(i.e., Ld ≪ LNL) with a focus on the pulse temporal evolution since the spectral width only slightly
changes [28–30]. On the other hand, substantial spectral broadening requires strong nonlinearity
(i.e., LNL ≪ Ld), and many researchers have investigated Eq. (7) under this condition as well to
gain some analytical insights [18,31–35]. In 2018, Zheltikov presented a closed-form analytical
description of the spectral width for the early stage of SPM-enabled spectral broadening with the
presence of positive or negative GVD [35]. More specifically, he assumed that an input Gaussian
pulse maintains its pulse shape during the early stage of spectral broadening. To analytically
estimate the z-dependent pulse duration, the effect of SPM is represented by a lumped chirp
parameter α0 [35]; that is, the initial pulse is given by

U(0, T) = exp

(︄
−

T2

2T2
0
− iα0T2

)︄
. (8)

Then the pulse propagates linearly in the fiber with its duration only affected by GVD:

T(z) = T0

[︃
(1 − α0β2z)2 +

(︂
z

Ld

)︂2
]︃ 1

2

. (9)

In Ref. [35], Zheltikov assumed α0 = −2γP0z/T2
0 , and it follows that

T(z) = T0

⎡⎢⎢⎢⎢⎣
(︄
1 +

2sgn(β2)|β2 |γP0z2

T2
0

)︄2

+

(︃
z

Ld

)︃2⎤⎥⎥⎥⎥⎦
1
2

. (10)

By neglecting (z/Ld)
2 and z4 terms in Eq. (10), Zheltikov obtained the following expression

for the z-dependent pulse duration:

T(z) = T0

[︃
1 +

4sgn(β2)z2

LdLNL

]︃ 1
2

= T0

[︄
1 + sgn(β2)

(︃
z
Lc

)︃2
]︄ 1

2

. (11)
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Lc =
√

LNLLd/2 defines a characteristic length, which Zheltikov identified as the propagation
distance corresponding to the maximum pulse compression for negative GVD [35]. Then the
amount of spectral broadening is estimated to be

∆ω(z) = γ
z
∫
0

P(z)
T(z)

dz. (12)

Considering P(z)T(z) = P0T0, Zheltikov obtained following analytical expressions for calculat-
ing the spectral broadening:

∆ω(z) ≈
γP0
T0

z
∫
0

[︄
1 + sgn(β2)

(︃
z
Lc

)︃2
]︄−1

dz =
⎧⎪⎪⎨⎪⎪⎩

1
T0

Lc
LNL

tan−1
(︂

z
Lc

)︂
, β2>0 (13)

1
T0

Lc
LNL

tanh−1
(︂

z
Lc

)︂
, β2<0 (14)

Motivated by Ref. [26,35], we adopt a different method to obtain analytical description of
SPM-enabled spectral broadening with a focus on estimating the OSL peak frequency and the
spectral FWHM. We make a further assumption that

U(z, T) ∝ exp
[︃
−

T2

2T(z)2

]︃
exp

{︃
iB(z)exp

[︃
−

T2

T(z)2

]︃}︃
. (15)

Following the approach in Ref. [26], we only need to determine the B integral B(z), and the
pulse duration T(z), in order to calculate the MIF ωm, and the OSL peak frequency ωP. To
estimate T(z), instead of the chirp defined by α0 = −2γP0z/T2

0 in Ref. [36], we assume

α0 = −
1
κ2

2γP0z
T2

0
, (16)

where κ is later determined by matching the analytical solutions and the simulation results.
Consequently Eq. (11) is modified to estimate the z-dependent pulse duration:

T(z) ≈ T0

[︃
1 +

sgn(β2)z2

(κLc)
2

]︃ 1
2

. (17)

The B integral is given by

B(z) = γ
z
∫
0

P(z)dz = γ
z
∫
0

P0T0
T(z)

dz = γP0
z
∫
0

[︃
1 +

sgn(β2)z2

(κLc)
2

]︃− 1
2

dz. (18)

For positive GVD, it follows that

B(z) = γP0
z
∫
0

[︃
1 +

z2

(κLc)
2

]︃− 1
2

dz =
κLc

LNL
sinh−1

(︃
z
κLc

)︃
=
κN
2

sinh−1
(︃

z
κLc

)︃
(19)

where N =
√︁

Ld/LNL is the soliton number that quantifies the relative strength of dispersion and
nonlinearity. Similarly, for negative GVD we have

B(z) = γP0
z
∫
0

[︃
1 −

z2

(κLc)
2

]︃− 1
2

dz =
κN
2

sin−1
(︃

z
κLc

)︃
. (20)
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3.1. Spectral broadening of transform-limited Gaussian pulse

For an input transform-limited Gaussian pulse, we use Eq. (3) to estimate the MIF:

ωm(z) =
√

2e−
1
2

B(z)
T(z)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−

1
2 κN√
2T0

sinh−1
(︂

z
κLc

)︂ [︂
1 + z2

(κLc)
2

]︂− 1
2 , β2>0 (21)

e−
1
2 κN√
2T0

sin−1
(︂

z
kLc

)︂ [︂
1 − z2

(κLc)
2

]︂− 1
2 , β2<0 (22)

According to Eq. (4), the OSL peak frequency follows

ωP(z) ≃ ωm −
π

2
3

2
ω

1
3
m

T(z)
2
3
≃ ωm

[︂
1 − 1.19B(z)−

2
3

]︂
,

and the broadened spectrum has a FWHM of

ωFWHM(z) = 2ωm. (24)

To determine κ, we introduce normalized time τ = T/T0 and normalized length Z = z/Lc, and
rewrite Eq. (7) as

i ∂U
∂Z =

1
N

∂2U
∂τ2 − N

2 |U |2U. (25)

It shows that soliton number N determines the pulse evolution, and, therefore, κ should be a
function of N. After careful comparison between analytical and simulation results, we find the
following empirical formula:

κ =

⎧⎪⎪⎨⎪⎪⎩
2.81 + ln(N)

26 , β2>0 (26)

2.03 + ln(N)

8 , β2<0 (27)
(26)

Figure 3 shows that κ increases slowly with an increased N. More specifically, it increases
from 2.9 (2.32) to 3.0 (2.65) as N increases from 10 to 150 for positive (negative) GVD.

Fig. 3. κ versus N corresponding to an initial transform-limited Gaussian pulse propagating
in fibers with positive (red curve) or negative (blue curve) GVD.

3.1.1. Spectral broadening of transform-limited Gaussian pulse with β2>0

We first verify our analytical results for positive GVD. Figure 4 compares spectral evolution
versus propagation distance given by numerical simulations [Fig. 4(a)] and by our analytical
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solution [Fig. 4(b)] for N = 60 with β2>0. Although significant difference exists between these
two methods in terms of spectral structures, our analytical solution does provide a good prediction
of the peak position of the OSLs. This is evidenced by the red and black line in Fig. 4(a), which
indicate the normalized MIF ωmT0 [Eq. (21)] and the OSL peak frequency ωpT0 [Eq. (23)],
respectively. For SPM-enabled spectral broadening in the positive GVD regime, the spectral
bandwidth increases at the initial propagation, then reaches a maximum value, and decreases
slowly due to optical wave-breaking for further propagation [18]. Our analytical results recover
such a characteristic feature. As a comparison, the white line corresponds to the estimation of
spectral broadening ∆ω(z) given by Eq. (13) derived in Ref. [35], which predicts that the spectral
bandwidth inreases monotonically along the propagtion.

Fig. 4. Comparison of spectral evolution given by (a) numerical simulation and by (b)
analytical solution [i.e., Fourier transform of Eq. (15)] for N= 60 and β2>0. The red curve
and black curve in (a) correspond to our analytical prediction of the MIF ωmT0 and the OSL
peak frequency ωpT0; white solid curve represents the estimation of spectral broadening
given by Eq. (13). The white dashed line marks the distance of z= 2Lc for the onset of
optical wave-breaking.

To make a detailed comparison, we choose the spectra in Fig. 4(a) at the propagation distances
of Lc, 2Lc, 3Lc, 4Lc, and 8Lc, and plot them as black curves in Fig. 5. The red curves in this
figure are the spectra [i.e., Fourier transform of Eq. (15)] in Fig. 4(b) at the same distances. The
results indicate that the spectral evolution can be divided into the following stages:

(1) z ≤ Lc: The spectral broadening is dominated by SPM, which results in clearly separated
spectral lobes. In this stage, the analytical results are in excellent agreement with the
simulation results.

(2) Lc<z ≤ 3Lc: The positive GVD starts to play an important role and consequently the
spectral lobes tend to gradually wash out. The deviation of the analytical results from the
simulation results becomes larger for an increased propagation distance.

(3) (3) 3Lc<z ≤ 4Lc: Although the onset of optical wave-breaking occurs at z ≃ 2Lc according
to Ref. [31], the resulting spectral pedestals start to appear at both sides of the spectrum
for z>3Lc. Meanwhile, the shift of OSLs slows down and reaches a maximum value at
z ≃ 4Lc.

(4) z>4Lc: The spectral lobes gradually merge together and the central portion of the broadened
spectrum becomes top flattened. The two pedestals due to optical wave-breaking grow
continuously in terms of both bandwidth and energy. The OSLs shift towards the spectral
center and thus the central portion of the spectrum becomes narrower and flatter.
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Fig. 5. Comparison of spectral evolution given by numerical simulation (black line) and
by analytical solution (red line) at different distances: (a) z = Lc, (b) z = 2Lc, (c) z =
3Lc, (d)z = 4Lc, and (e) z = 8Lc with N = 60, β2>0.

Although our simple model does not recover the effect of optical wave-breaking, it does
reasonably predict the OSL peak position and the spectral bandwidth. To make a direct
comparison, we plot in Fig. 6(a) the OSL peak frequency as a function of the propagation
distance for N= 20, 60, and 100. The solid squares represent the simulation results and the
curves correspond to the analytical results given by Eq. (23). Figure 6(b) compares the spectral
FWHM given by simulation results (solid squares) and by Eq. (24) (solid curves). The analytical
expressions agree well with the simulation results.

Fig. 6. (a) Normalized OSL peak frequency and (b) Normalized spectral FWHM as a
function of the propagation distance for N= 20, 60, and 100 with β2>0. (c) Normalized MPF
and maximum FWHM versus N in the range between 5 and 120. Solid squares: simulation
results; curves: analytical solutions .

For experimental designs, the maximum peak frequency (MPF) of the OSLs and the maximum
FWHM are the two most important parameters. Extensive simulations show that these two
maxima occur at the propagation distance of 4.0Lc- 4.6Lc depending on the soliton number N.
To estimate these values using our analytical results, we need to find the maximum values of
Eq. (21) and Eq. (23). At z ≃ 1.5κLc, both functions reach the maximum value:

ωmax
m ≃

√
2e− 1

2 κN
3T0

, (28)

ωmax
p ≃

√
2e− 1

2 κN
3T0

[︃
1 −

5
3
(κN)−

2
3

]︃
. (29)
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The maximum FWHM is given by

ωmax
FWHM = 2ωmax

m ≃
2
√

2e− 1
2 κN

3T0
. (30)

Figure 3 shows that κ ≃ 3 for a big range of N, which further simplifies Eqs. (29)(30):

ωmax
p ≃

√
2e− 1

2 N
T0

(︃
1 −

5
3 5

3
N− 2

3

)︃
≃

0.86N
T0

(︂
1 − 0.8N− 2

3

)︂
, (31)

ωmax
FWHM ≃

2
√

2e− 1
2 N

T0
≃

1.72N
T0

. (32)

The blue curve in Fig. 6(c) shows the normalized MPF given by Eq. (31), which agrees well
with the simulation results (solid squares). The red curve shows the estimation of the maximum
FWHM using Eq. (32), which tends to deviate from the simulation results as N increases. For N
larger than 50, Eq. (32) underestimates the FWHM with a deviation less than 5%.

3.1.2. Spectral broadening of transform-limited Gaussian pulse with β2<0

To verify that our analytical results are valid for spectral broadening with β2<0, we compare
spectral evolution versus propagation distance given by numerical simulation [ Fig. 7(a)] and by
our analytical solution [Fig. 7(b)] for N= 60. Surprisingly, these two methods generate similar
spectral structures with the propagation distance up to z = 1.14Lc, where the higher-order soliton
experiences the maximum compression and reaches the minimum duration. In the following, we
use LMC to denote this distance. Further propagation beyond LMC stretches the compressed pulse
followed by generation of multi-soliton temporal structure and consequently the spectrum starts to
develop complicated structures [27]. Chen and Kelley numerically found that LMC ≃ 1.82Ld/N,
which is equivalent to LMC ≃ 1.1Lc (white dotted line in Fig. 7) [33]. The red and black line in
Fig. 7(a), which indicates the normalized MIF ωmT0 [Eq. (22)] and the OSL peak frequency ωpT0
[Eq. (23)], respectively. Clearly, our analytical solution provides a good prediction of the OSL
peak position during the entire propagation stage of higher-order soliton self-compression. As a
comparison, the white solid line in Fig. 7(a) corresponds to the estimation of spectral broadening
∆ω(z) given by Eq. (14) that is derived in Ref. [35], which diverges at the distance of z = Lc
(white dashed line).

To make a detailed comparison, we choose the spectra in Fig. 7(a) at the propagation distances
of 0.4Lc, 0.6Lc, 0.8Lc, and 1.1Lc, and plot them as black curves in Fig. 8. The red curves in this
figure are the spectra in Fig. 7(b) at the same distances. The results indicate that, for z ≤ 0.6Lc,
the analytical results are in excellent agreement with the simulations. Further propagation leads
to an increased deviation of the analytical results from the simulations. In contrast to the spectral
washout that occurs in the positive-GVD case, negative GVD suppresses the intermediate lobes
sitting between the two OSLs. In other words, these two OSLs contain larger portion of input
pulse energy with an increased propagation distance up to LMC ≃ 1.1Lc. For example, the two
OSLs of the black curve in Fig. 8(d) contains 70% of pulse energy.

Figure 9(a, b) plot the normalized OSL peak frequency and the spectral FWHM as a function
of propagation distance for N= 20, 60, and 100, respectively. The analytical solutions displayed
as solid curves agree well with the simulation results represented by solid squares.

For negative GVD, it is more convenient to estimate the MPF at LMC ≃ 1.1Lc. Plugging
z = 1.1Lc into Eq. (22) and Eq. (23) yields

ωmax
m ≃

e− 1
2 κN

√
2T0

sin−1
(︃
1.1
k

)︃ [︃
1 −

1.12

k2

]︃− 1
2

, (33)
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Fig. 7. Comparison of spectral evolution given by numerical simulation (a) and by analytical
solution (b) for N= 60 and β2<0. The red curve and black curve in (a) correspond to our
analytical prediction of the MIF ωmT0 and the OSL peak frequency ωpT0; white solid curve
represents the estimation of spectral broadening given by Eq. (14). The white dashed lines
and white dotted lines mark the distance of z=Lc and z=1.1Lc, respectively.

Fig. 8. Comparison of spectral evolution given by numerical simulation (black line) and by
analytical solution (red line) at different distances: (a) z = 0.4Lc, (b) z = 0.6Lc, (c) z =
0.8Lc, and (d) z = 1.1Lc with N = 60, β2<0.

Fig. 9. (a) Normalized OSL peak frequency and (b) Normalized spectral FWHM as a
function of the propagation distance for N= 20, 60, and 100 with β2<0. (c) Normalized
MPF and normalized maximum FWHM versus N in the range between 5 and 120. Squares:
simulation results, solid curves: analytical solutions .
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ωmax
P ≃ ωmax

m

{︄
1 − 1.19

[︃
κN
2

sin−1
(︃
1.1
k

)︃]︃− 2
3
}︄

. (34)

The maximum FWHM is then given by

ωmax
FWHM = 2ωmax

m ≃

√
2e− 1

2 κN
T0

sin−1
(︃
1.1
k

)︃ [︃
1 −

1.12

k2

]︃− 1
2

. (35)

Figure 3 shows that κ ≃ 2.5 for a big range of N, and we plug it into Eqs. (34)(35) for a further
simplification:

ωmax
p ≃

0.54N
T0

(︂
1 − 1.73N− 2

3

)︂
, (36)

ωmax
FWHM ≃

1.08N
T0

. (37)

Figure 9(c) shows the MPF and maximum FWHM given by simulation and by Eq. (36)(37).
Out analytical results slightly underestimate the MPF and FWHM with a deviation less than 5%
as N varies between 5 and 120.

3.2. Spectral broadening of transform-limited hyperbolic-secant pulse

For an input transform-limited hyperbolic secant pulse, we use Eq. (5) to estimate the MIF:

ωm(z) =
4B(z)

3
√

3T(z)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2κN

3
√

3T0
sinh−1

(︂
z

κLc

)︂ [︂
1 + z2

(κLc)
2

]︂− 1
2 , β2>0 (38)

2κN
3
√

3T0
sin−1

(︂
z

kLc

)︂ [︂
1 − z2

(κLc)
2

]︂− 1
2 , β2<0 (39)

We can then estimate the OSL peak frequency following Eq. (6) and the FWHM of the
broadened spectrum:

ωP(z) ≃ ωm −
π

2
3

2
ω

1
3
m

T(z)
2
3
≃ ωm

[︂
1 − 1.28B(z)−

2
3

]︂
, (40)

ωFWHM = 2ωm. (41)

For hyperbolic secant pulse, we find the following empirical formula for κ:

κ =

⎧⎪⎪⎨⎪⎪⎩
2.54 + ln(N)

6.5 , β2>0 (42)

1.87 + ln(N)

18 , β2<0 (43)

Figure 10 shows that κ increases slowly from 2.9 (2.0) to 3.3 (2.15) for positive (negative)
GVD as N increases from 10 to 150.

We first discuss the case for β2>0. To estimate the OSL MPF and the maximum spectral
FWHM, we need to find the maximum values of Eq. (40) and Eq. (41). At z ≃ 1.5κLc, both
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Fig. 10. κ versus N corresponding to an initial transform-limited hyperbolic-secant pulse
propagating in fibers with positive (red curve) GVD or negative (blue curve) GVD.

functions reach the maximum value:

ωmax
P ≃

4κN
9
√

3T0

[︂
1 − 1.8(κN)−

2
3

]︂
, (44)

ωmax
FWHM ≃

8κN
9
√

3T0
. (45)

The red curve in Fig. 10 shows that κ ≃ 3.2 for a big range of N, resulting in further
simplification:

ωmax
P ≃

0.82N
T0

(︂
1 − 0.83N− 2

3

)︂
, (46)

ωmax
FWHM ≃

1.64N
T0

. (47)

For hyperbolic secant pulse propagating inside an optical fiber with β2<0, Chen and Kelley
numerically found that LMC ≃ 1.93Ld/N, which is equivalent to LMC ≃ 1.03Lc ≃ 1Lc [33].
Plugging z = Lc into Eq. (39) and Eq. (40) yields

ωmax
m ≃

2κN
3
√

3T0
sin−1

(︃
1
k

)︃ [︃
1 −

1
k2

]︃− 1
2

, (48)

ωmax
P ≃ ωmax

m

{︄
1 − 1.28

[︃
κN
2

sin−1
(︃
1
k

)︃]︃− 2
3
}︄

. (49)

The maximum FWHM is then given by

ωmax
FWHM = 2ωmax

m ≃
4κN

3
√

3T0
sin−1

(︃
1
k

)︃ [︃
1 −

1
k2

]︃− 1
2

. (50)

The blue curve in Fig. 10 shows that κ ≃ 2.1 for N in a big range, which further simplifies
Eqs. (49)(50):

ωmax
p ≃

0.46N
T0

(︂
1 − 1.98N− 2

3

)︂
, (51)

ωmax
FWHM ≃

0.91N
T0

. (52)

Figure 11 shows both the simulation results (solid squares) and analytical solutions (solid
curves) for the normalized OSL peak frequency [Fig. 11(a)] and spectral FWHM [Fig. 11(b)] as
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a function of the propagation distance for N= 20, 60, and 100, respectively, for β2>0; Fig. 11(c)
shows the MPF and maximum FWHM given by simulation and by Eq. (46)(47). Figure (d-f)
present a similar comparison as Fig. 11(a-c) for the case of β2<0. The results clearly indicate the
excellent agreement between analytical solutions and simulation results.

Fig. 11. Comparison between simulation results and analytical solutions for hyperbolic
secant pulse propagating in fibers with different GVD sign: (a-c) β2>0 and (d-f) β2<0. (a,
d) Normalized OSL peak frequency and (b, e) Normalized spectral FWHM as a function
of propagation distance for N= 20, 60, and 100. (c, f) Normalized MPF and normalized
maximum FWHM versus N in the range between 5 and 120. Solid squares: simulation
results, solid curves: analytical solutions .

4. Discussion and conclusion

Table 1 summarizes the unified analytical solutions for a Gaussian or Sech input pulse propagating
in the strong nonlinearity regime with either positive or negative GVD. The results seem to suggest
that reducing the input pulse duration T0 can efficiently increase the FWHM of the broadened
spectrum since ωmax

FWHM is proportional to N/T0. Indeed, given that N =
√︁

Ld/LNL = T0
√︁
γP0/β2,

ωmax
FWHM ∼

√︁
γP0/β2 and is independent on pulse duration. In another word, the maximum

bandwidth is only determined by fiber nonlinear parameter, GVD, and pulse peak power. This
has important implication on the application that demands maximizing the spectral bandwidth of
the broadened spectrum such as low-noise continuum generation, nonlinear pulse compression,
and SESS.

Our results provide useful guidelines for choosing proper experimental parameters to optimize
the SPM-enabled spectral broadening. For example, implementation of a SESS source prefers a
broadened spectrum with well-separated spectral lobes to ensure high conversion efficiency and
minimized noise [36]. If the fiber has negative GVD, the broadened spectrum always consists
of isolated spectral lobes as long as the fiber length is shorter than LMC, which is about 1.1Lc
(Lc) for Gaussian (Sech) input pulse. As the fiber has positive GVD, the fiber length is better
less than 2Lc to prevent optical wave-breaking and maintain clear spectral lobes. Our solutions
predict the peak position of the OSLs, which after filtering corresponds the peak wavelength of
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Table 1. Main analytical results on estimation of SPM-enabled spectral
broadening for Gaussian or hyperbolic secant pulse propagating inside

optical fibers with positive or negative GVD

β2>0 β2<0

Gaussian Sech Gaussian Sech

κ = α +
log(N)

β

α = 2.81 α = 2.54 α = 2.03 α = 1.87

β = 26 β = 6.5 β = 8 β = 18

T(z) = T0[1 + α
z2

(κLc)
2 ]

1
2 α = +1 α = −1

B(z) =
κN
2

f (z) f (z) = sinh−1( z
κLc

) f (z) = sin−1( z
κLc

)

ωm(z) = α
B(z)
T(z)

α =
√

2e−
1
2 α = 4

3
√

3
α =

√
2e−

1
2 α = 4

3
√

3

ωP(z) ≃ ωm[1 − βB(z)−
2
3 ] β = 1.19 β = 1.28 β = 1.19 β = 1.28

ωFWHM(z) = 2ωm(z) 2ωm(z)

ωmax
P ≃ α

N
T0

(1 − βN− 2
3 )

α = 0.86 α = 0.82 α = 0.54 α = 0.46

β = 0.8 β = 0.83 β = 1.73 β = 1.98

ωmax
FWHM ≃ α

N
T0

α = 1.72 α = 1.64 α = 1.08 α = 0.91

the filtered SESS pulses. In other words, we can use these analytical results to quickly design the
experimental parameters in order to achieve a SESS pulse at a targeted wavelength.

In recent years, the combination of SPM-enabled spectral broadening and bandpass filters
constitutes an effective saturable absorber in Mamyshev oscillators—a new type of passively
mode-locked oscillators that are immune to environmental disturbance and can deliver µJ-level
pulse energy [37–40]. Our analytical results may provide some insight when designing these
oscillators. Mamyshev oscillators that produce high peak-power femtosecond pulses at 1.03 µm,
1.55 µm, and 2.0 µm have been demonstrated by incorporating Yb-fiber, Er-fiber, and Tm-fiber
into the laser cavity, respectively [37,38,41–43]. In all the reported Mamyshev oscillators, fibers
with positive GVD were employed to facilitate SPM-enabled spectral broadening. Our work in
this paper indicates that SPM together with negative GVD can efficiently broaden the spectrum
prior to the pulse splitting that occurs after reaching the maximum soliton self-compression. We
anticipate that Mamyshev oscillators operating at 1.55 µm or 2.0 µm can be constructed using all
negative-GVD fibers, which may further improve the energy scalability.

To conclude, we present an analytical treatment of fiber-optic spectral broadening resulting
from SPM and GVD by solving the NLSE in the strong nonlinearity (i.e., LNL ≪ Ld) regime. To
quantify the OSL peak frequency of the broadened spectrum, we extend the work by Finot et al.
[i.e., Ref. (26)] that analyzed the spectral broadening due to pure SPM. As shown by Eqs. (3-6),
they first calculated MIF, ωm, which is proportional to the ratio between B integral and pulse
duration; then they further expressed the OSL peak frequency, ωP, as a function of ωm [26]. In
this paper, we generalize Eqs. (3-6) to the scenario that GVD is taken into account, and thus the
most important step is to find the expression for the z-dependent pulse duration and B integral.
Inspired by Zheltikov’s work [i.e., Ref. (35)] that defined a lumped chirp parameter α0 to account
for SPM when estimating the pulse duration in the strong nonlinearity regime, we modify α0 by
including κ—a fitting parameter determined by matching the simulation results with the analytical
solutions. We further calculate the z-dependence B integral, and then obtain the closed-form
analytical solutions for MIF ωm and the OSL peak frequency ωP. We also demonstrate that
the FWHM of the broadened spectrum is well estimated by 2ωm. These analytical solutions
allow us to identify the maximum values of the OSL peak frequency and the spectral FWHM.
In this paper, we present the unified results for both Gaussian and hyperbolic secant pulse as
the input. Given that Ref. [26] also obtained analytical results for spectral broadening by pure
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SPM for Lorentzian and super-Gaussian pulse, we believe that our method can be applied to
these two pulse shapes as well. Our findings provide useful insights for experiments that involve
optimization of the SPM-enabled spectral broadening such as nonlinear compression of relatively
long pulses, design of SESS sources, implementation of pulse regenerators, and construction of
Mamyshev oscillators.
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