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Abstract
In this work, we used nanocomposite saturable absorbers (SAs) in order to precisely design and
modulate the process of compositing the light absorption by band gap engineering. Due to the
higher absorption intensity of our MoS2/MXene nanocomposite, we have successfully shortened
the pulse duration (1.2 μs) of SA with enhancing saturable absorption intensity
(7.22MW cm−2), and the ultra-fast fiber laser based on this nanocomposite SA has shown wider
Q-switching stable range in the case of high pump power. This strategy can efficiently improve
the performance of SA and shows the potential application prospect of nanocomposites in
nonlinear optics.

Supplementary material for this article is available online
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1. Introduction

Saturable absorbers (SAs) are the critical component of the
ultra-fast laser fiber which can effectively convert the con-
tinuous wave into ultra-fast optical pulses, namely the non-
linear optics [1, 2]. With the rapidly increasing demands in
semiconductor industry [3], optical communications [4],
metamaterial absorber [5], and etc, the adequate SAs are
required to replace the traditional light source such as sap-
phire [6], owing to their advantages, Inc., low-cost, simple
synthesis process and shorter achievable pulse durations
[7, 8]. The present SAs include traditional SAs represented by
semiconductor saturable absorber mirrors (SESAM), and low-
dimensional nanomaterials based SAs [9–11]. To date,
although SESAM have been studied for many years, their
application and development are still limited by the shortage

of adjustable absorption [12], which has been proved as a
crucial parameter determining the performance of SAs [3].
Another type of SAs, the low-dimensional nanomaterials
(especially two-dimensional (2D) nanomaterials) based SAs,
have gradually replaced the SESAM ascribing to their unique
properties [13], e.g. switchable bandgap, high carrier mobi-
lity, etc, which can broaden the adjustment scope of nonlinear
absorption [14]. For example, unlike the SESAM with limited
operation bandwidth, the graphene based SAs demonstrate
broadband nonlinear optical response and ultrafast carrier
colling rate [15, 16]. Furthermore, because the third-order
nonlinear optical susceptibility of MoS2 is higher than gra-
phene, the ultra-broadband nonlinear optical response can be
achieved [17–19].

It has been confirmed that the light absorption which
effected by bandgap structure influences the performance of
SAs. However, comparing with the intrinsically gapless band
structure [16], even if the bandgap (1.29 eV) of the bulk MoS2
can be adjusted to 1.80 eV as the thickness decreases to
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monolayer [20], the operation bandwidth of single SA mat-
erial is still deficient, which limits further enhancement of the
SAs’ performance. As a solution, there are several methods
available for broadening the adjustable range of light
absorption and improving the SAs’ performance such as
doping Se into MoS2 nanosheets [21], compounding MoS2
and WS2 or MoSe2 and WSe2 [22, 23], etc. However, because
of the same structure and properties of MoS2 and their deri-
vative, the enhancement of these methods is restricted. The
MXene, as a new member of the 2D material family [24, 25],
their nonlinear optical response has been found with efficient
saturable absorption and negligible lossy nonlinear absorption
components in the near infrared region [26], which makes
MXene become a suitable candidate for SA [27–30]. Thus,
exploring SAs based on MXene/MoS2 hybrid nanomaterials
may be an effective way to design and fabricate the ade-
quate SAs.

In this work, referring to this design strategy, we fabri-
cated a nanocomposite SA based on MoS2/MXene nano-
composite to further improve the performance of SA. The
results show that MoS2/MXene-based SA has a smaller
modulation depth (2.1%) than MoS2 (1.6%) and a lager
saturable absorption intensity (7.22MW cm−2) than pure
MXene (0.47MW cm−2). Moreover, the ultra-fast fiber laser
system based on MoS2/MXene SA shows a better
Q-switching characteristics, and comparing with the systems
based on pure MoS2, WS2 or MXene, our work has achieved
an excellent pulse width (1.2 μs) owing to the suitable
modulation depth and saturable absorption intensity. All of
this means that this strategy may be applied to fabricate
higher performance ultra-fast fiber lasers in the future and
meet the requirement of other high-tech fields.

2. Experimental section

2.1. Preparation of Ti3C2Tx MXene nanosheets

The commercial Ti3AlC2 (MAX phase) powders purchased
from Forsman Scientific Co. were used to prepare Ti3C2Tx

MXene nanosheets through a previously reported method
[31]. In brief, gently add 1.3 g LiF into 20 ml 9M HCl with
continuous stirring before adding MAX phase powders. After
LiF completely dissolving, MAX phase powders were slowly
added to avoid the side reactions. The reaction continued 24 h
at 35 °C under magnetic stirring and then the product was
washed with deionized water (DI water) until the pH value
reached 6. Then the above supernatant was ultrasonicated
intercalated for 1 h in ice bath. Finally, the Ti3C2Tx MXene
nanosheets were gained after centrifugation at 3500 rpm for
30 min.

2.2. Synthesis of MoS2/MXene composite

A microwave assisted hydrothermal process was used to
synthesis MoS2/MXene composite. In detail, the 0.2 g
Ti3C2Tx MXene nanosheets were redistribute into 20 ml DI
water and transferred to a Teflon lining, and after adding 1.5 g

thioacetamide (TAA) the reaction system A was prepared.
The reaction system B was obtained by ultrasonic dispersing
0.01 g MoO3 into 20 ml DI water. Then, the reaction system
B was added into reaction system A and the mixture was
heated to 150 °C in 3 min with assisting of microwave and
kept for 1 h. The product was centrifugated and washed
several times. And after freeze drying the MoS2/MXene
composite was obtained.

2.3. Q-switching experiment set-up

The concentration of the material on the end face of the fiber
can be controlled by a ‘drop after drop’ method, to observe
the characteristics of the laser pulse at different concentra-
tions. We have built an erbium-doped all fiber passively
Q-switched laser system showed in, which consist of a laser
diode (centre wavelength of 976 nm, output power ranging
from 0 to 600 mW), a 980/1550 nm wavelength division
multiplexer (WDM), a polarization controller (PC), a
MXene/MoS2 or MXene as saturable absorbers (SA), a
polarization independent isolator (PI-ISO) and a 10:90 output
coupler (OC). The total cavity length of the laser is about
5.1 m. Pump light is coupled into the cavity through WDM,
and 0.56 m erbium-doped (liekki Er-110-4/125) provide gain
for the erbium-doped fiber laser. PI-ISO ensure the uni-
directional transmission of the laser in the cavity and prevent
the reverse light. PC can change the polarization state of the
beam in the cavity and optimize the working state of the laser.
10% port of OC is connected with collimator to measure laser
pulse characteristics, and 90% port is connected with ring
cavity.

2.4. Characterization and measurement

The compositions and morphologies of samples were char-
acterized by transmission electron microscope (TEM JEOL
JEM-2100F), filed-emission scanning electron microscope
(FE-SEM FEI Apreo HiVac), atomic force microscope
(Oxford), Raman spectroscopy (Renishaw inVia), and X-ray
diffraction spectrometer (XRD Brucker D8 Advance).

3. Result and discussion

3.1. Synthesis and characterization of MoS2/MXene
nanocomposite

Firstly, the MXene nanosheets were fabricated by minimally
intensive layer delamination (MILD) method [31]. After the
Al layer was selective etched from MAX phase, the Ti3C2Tx

was obtained because of the strong Ti–C band. The etched
MXene was exfoliated to nanosheets in the subsequent
intercalation process. The scanning electron microscopy
(SEM) images of MAX powders and MXene nanosheets
(figures 1(a) and (b)) show that the particles were successfully
transformed into nanosheets. Moreover, the contrast of
nanosheets in transmission electron microscopy (TEM) image
testifies the thin thickness of MXene, which is quantitated as
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∼1.5 nm by atomic force microscopy (AFM) (insert of
figure 1(f)).

With abundant surface terminated groups [32], such as –
O, –OH, –F [33], the excellent hydrophilic MXene nanosh-
eets (figure S1 (available online at stacks.iop.org/NANO/33/
315701/mmedia)) can be easily dispersed into hydrothermal
reaction system and composited [34]. The MoS2/MXene
nanocomposite was synthesized through microwave assisted
hydrothermal process with MXene, MoO3, and TAA as pre-
cursor. Because of the rapid heating process and the inter-
action between TAA and terminated groups on MXene
surface, the burst nucleation occurred on the MXene surface,
as shown in Finger 1d. Moreover, due to anchoring effect of
MoS2, the MXene nanosheets were connected with the bigger
size of nanocomposite than pure MXene nanosheets, as can
be seen in figure 1(d). According to the SEM image of
MoS2/MXene (figure 1(e)), the originally flat morphology of
MXene has been obviously changed (figure 1(b)) and the
crumpled morphology can effectively solve the serious

aggregation issue of nanosheet during drying and the more
exposed nanocomposite may become a reason of the excellent
performance [35]. The height topography and surface
morphology of MoS2/MXene were measured by AFM
(figure 1(d)), which revealed that the thickness of
MoS2/MXene nanocomposite is ca. 13 nm and the surface
morphology mutually corroborate with TEM image. The
element distribution in EDS (figure S2) shows that there is no
damage to the element composition of MXene and the
corresponding distribution location of element Mo and S
proves the presence of MoS2.

Comparing the XRD patterns of MAX phase (figure S3)
and MXene, both the disappeared diffractions peak at 39°
(figure 1(g)), corresponding to the (104) lattice plane of
Ti3AlC2 MAX and the shift of (002) peak at 9.7° indicating
the successfully prepared of MXene nanosheets [36, 37]. The
MoS2 was successfully introduced with the presence of dif-
fraction peaks at 14.3°, 33.4°, 39.6° and 59.6° which can be
indexed as the (002), (101), (103) and (110) lattice planes

Figure 1. Characterizations of MXene nanosheets and MoS2/MXene nanocomposite. (a), (b) SEM images of MAX powders, MXene
nanosheets. (c) TEM images of MXene nanosheets and (d) MoS2/MXene nanocomposite. (e) SEM image of MoS2/MXene nanocomposite.
(f) AFM image of MoS2/MXene composite (insert is AFM of MXene nanosheets). (g) XRD pattern of MXene nanosheets and MoS2/
MXene nanocomposite. (h) Raman spectrum of MoS2/MXene nanocomposite. (i) Absorption spectrum of MXene and MoS2/MXene
composite aqueous solution.
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diffraction peaks of 2H-MoS2 (JCPDS No.37-1492)
(figure 1(g)) [38, 39]. The left shift of (002) peak from 6.8° to
5.4° means a border interlayer distance of MXene due to the
introduction of MoS2 [40, 41]. The successful synthesis of
MoS2/MXene nanocomposite is further confirmed by Raman
spectrum (figure 1(h)), where the typical E2g

1 and A1g modes
of 2H-MoS2 at 373 cm−1 and 401 cm−1 can be clearly
observed with no change of MXene Raman peaks [42, 43].
As can be seen in figure 1(i), the UV–vis–NIR absorption
spectrum shows that MoS2/MXene nanocomposite have a
stronger absorption in near-infrared regions than MXene,
which is beneficial for their application as a SA.

3.2. Nonlinear optical responses of MoS2/MXene
nanocomposite saturable absorbers

Before assembling SA into laser system, the nonlinear optical
absorption of SA should be measured first. The nonlinear
optical absorption of the MoS2/MXene SA and MXene SA
were characterized using the twin-detector technique, which
is reported in our previous work [44], viz. manipulating a
home-made passively mode locked fiber laser at 1565 nm,

with 900 fs pulse duration, and 44.7MHz pulse repetition rate
(details in Experiment section).

Comparing the results in figures 2(a) and (b), the Isat, ΔT
of MoS2/MXene SA and MXene SA are 7.22MW cm−2,
2.1% and 0.47MW cm−2, 3.54%, respectively, which means
that these two types SAs have the same saturable absorption,
modulation depth and saturation intensity. However, the
saturable absorption intensity of MoS2/MXene nanocompo-
site SA is 15 times higher than MXene SA. Thus, under the
same pump power the MoS2/MXene nanocomposite SA will
achieve higher light-to-light conversion efficiency.

3.3. Ultrafast photonics applications of fiber laser system

The MoS2/MXene and MXene were tightly attached to the
end face of the fiber by dropping material alcohol solution on
the FC/APC fiber and evaporating the alcohol (figure 2(c)),
and then the erbium-doped all fiber passively Q-switched
laser systems were set up (figure 2(d)). According to the
optical spectrum of MXene and MoS2/MXene (figure S4),
the central wavelength λ0 and width can be known (λ0
(MXene) = 1560.8 nm, Δλ (MXene) = 5.12 nm, λ0

Figure 2. The nonlinear optical absorption of (a) the MXene/MoS2 SA and (b) MXene SA. (c) The SA transfer technology. (d) The set-up of
erbium-doped all fiber passively Q-switched laser system.
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(MoS2/MXene) = 1558.4 nm, Δλ (MoS2/MXene)
= 4.92 nm). Then the stable pulse trains of MoS2/MXene SA
and MXene SA under different pump power are shown in
figures 3(a) and (b), which depicts the stable Q-switching
mechanism presenting between 270 mW pump power and of
600 mW pump power using nanocomposite SA, while for
MXene SA, the Q-switching threshold decreased to 200 mW
but vanished at 320 mW. Moreover, the higher Q-switching
damage threshold will let this nanocomposite SA can be
applied in more fields.

The shortest pulse duration of these two SAs in
Q-switching erbium doped fiber laser system are shown in
figures 3(c) and (d) (single pulse at Q-switching damage
threshold, viz. 600 mW for MoS2/MXene SA and 320 mW
for MXene SA, respectively). A shorter duration of 1.2 μs
was achieved with MoS2/MXene nanocomposite SA which
is a brilliant performance improvement comparing with
MXene SA (2.1 μs). This improvement is owing to the
nanocomposite SA’s higher saturable absorption intensity
(7.22MW cm−2) as mentioned above, which leads a stronger
bleaching effect on the laser and a narrower width pulse was

achieved. It has been confirmed that the saturable absorption
intensity of MoS2/MXene is improved comparing with the
pure MXene, caused by the composite process. So, the pulse-
narrowing phenomenon can be explained through the mech-
anism that in Q-switching process the pulse width is deter-
mined by relationship between the gain and loss of the
system. When the gain become lager, the more population
inversion can be accumulated, and the SA can become
saturable more rapidly, so the pulse width is narrowed.
Moreover, the absorption capacity of MoS2/MXene is
enhanced, which has a certain narrowing effect on pulse.

The larger output power and pulse energy of
MoS2/MXene are other improvements caused by higher
saturable absorption intensity. As shown in figures 4(a) and
(b), due to the higher Q-switching damage threshold
(600 mW), the MoS2/MXene nanocomposite SA based laser
system can be manipulated at a wider pump power range.
Thus, the largest output power and pulse energy can be
achieved to more than quadruply higher state, viz. 4.2 mW
and 42.6 nJ for MoS2/MXene SA and 0.82 mW and 10.5 nJ
for MXene SA. Even at identical pump power our

Figure 3. Pulse waveform diagram under different pump power (a) MoS2/MXene SA, (b) MXene SA. The shortest pulse width (c) MoS2/
MXene SA, (d) MXene SA.
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MoS2/MXene nanocomposite SA also shows better perfor-
mance, e.g. 10.2 nJ and 0.73 mW for MoS2/MXene SA at
300 mW pump power comparing with 6.9 nJ and 0.48 mW
for MXene SA at same condition.

The reducing trend of repetition rate of Q-switching fiber
laser system with increasing pump power is a typical
Q-switching characteristic which can be obviously observed
with both two SAs (figures 4(c) and (d)). More specifically,
the repetition rate raised from 65.96 kHz to 98.52 kHz and
pulse duration reduced from 2.7 μs to 1.2 μs for

nanocomposite laser system, while as for MXene laser sys-
tem, this variation presented in the range of 48.58 kHz to
76.57 kHz and 3.98 μs to 2.1μs. Moreover, within the wider
adjustable range of pump power (270–600 mW), the larger
repetition rate (98.52 kHz) and narrower pulse duration (1.2
μs) can be achieved with MoS2/MXene nanocomposite SA
based laser system, and all this improvement can be attributed
to the composite process caused higher absorption intensity.

Moreover, through theoretical calculation the power
density of the MoS2/MXene nanocomposite SA based laser

Figure 4. Pulse energy, output power change with pump power (a) MoS2/MXene SA, (b) MXene SA. The variation of pulse width and
repetition frequency with pump power (c) MoS2/MXene SA, (d) MXene SA.

Table 1. Performance comparison of Ti3C2Tx/MoS2 with other materials.

ΔT (%) Single energy (nJ) Isat (MW cm−2) Pulse width (μs) repetition rate range (kHz) References

Graphene 1.5 28.7 — 3.89 10.36–41.8 [45]
Bi2Se3 30 4 — 9.5 2.6–12 [46]
MoS2 1.6 63.2 13 7.5 6.5–27 [18]
WS2 0.99 11 36.2 1.73 27.2—84.8 [47]
Ti3C2Tx 3 125 0.4 2.31 70.67–96 [30]
Ti3C2Tx 3.54 10.5 0.47 2.1 48.58–76.57 This work
Ti3C2Tx/MoS2 2.1 42.6 7.22 1.2 65.96–98.52 This work
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system is approximate 0.05MW cm−2 which is lower than
the saturable absorption intensity during Q-switching process.
Due to all optical fiber structure, the system possesses
stronger anti-interference ability and robustness comparing
with other space structure system. So, the performance of
system didn’t show evident degeneration during the
Q-switching operation.

In table 1, we compare MXene SA, MoS2/MXene SA
with the other 5 single nanomaterials SA that work around 1.5
μm. Comparing with single nanomaterial SAs based on gra-
phene, WS2, MoS2, and MXene, our MoS2/MXene nano-
composite SA possesses the shortest pulse width which is
related to their absorption intensity and ΔT. As a result, our
MoS2/MXene nanocomposite SA has excellent photo
bleaching capability and improved performance [45–47].

Comparing with the single component materials such as
graphene, Bi2Se3, MoS2, and MXene, the excellent photo
bleaching capability and improved performance of
MoS2/MXene composite can be attributed to the adjustable
band structure and electron migration process of this com-
posite. It has been proved that the MXene possess metallic
electron conductivity and when combing MXene with other
materials such as MoS2 the electron in MoS2 will rapidly
transfer to the MXene and this migration cause the variation
of band structure of MoS2 then affect the optical properties
[48]. And this regulation can be further optimized to obtain
more suitable band structure by adjusting the ratio of MoS2
and MXene, which is not possessed for single component
nanomaterials. Moreover, the synthesis process of MoS2/
MXene composite is simplified because of abundant surface
terminal groups as mentioned above, and this also means that
there are a great many of combination mode for MXene based
composite, which indicates the more potential to design and
fabricate SA or other absorbers with better performance using
this method [49].

4. Conclusions

In summary, in pursuit of higher SAs’ performance, we took
advantage of nanocomposite materials’ abundantly adjustable
range of light absorption and proposed a MoS2/MXene
nanocomposite SA design strategy. With microwave assisting
hydrothermal method the MoS2/MXene nanocomposite SA
was successfully fabricated, and this SA possessed
7.22MW cm−2 absorption intensity and 2.1% ΔT. After
assembling into fiber laser system, the result shows that the
Q-switching pulse presents in the wide pump power range of
270–600 mW and the narrowest pulse duration can achieve
1.2 μs which is outstanding for this parameter, meanwhile the
pulse energy is still at a relatively high level. All this have
proved that this MoS2/MXene nanocomposite SA has an
excellent performance meaning this strategy may lead more
potential nanocomposite SAs to be used in the high-perfor-
mance nonlinear optics and ultra-fast lasers.
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