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We used an all-optical poling method to fabricate quadratic
nonlinearity gratings in a tetragonal 0.62Pb(Mg1/3Nb2/3)O3-
0.38PbTiO3 (PMN-38PT) crystal. We then employed these
gratings in quasi-phase matched collinear second harmonic
generation processes. By measuring the second harmonic
output, we provided, for the first time, to the best of
our knowledge, quantitative estimates of all three non-zero
quadratic nonlinearity coefficients of the PMN-38PT crys-
tal. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.450042

There has been continuous interest in PT-relaxor ferroelectrics
due to their excellent physical properties [1,2]. Giant piezo-
electric constants [3,4], high acoustics [5], and electro-optic
constants [6] make these materials excellent candidates for appli-
cation in monolithic phononic crystals. Furthermore, thanks
to the lack of center of inversion, these materials exhibit
second-order (quadratic) nonlinear properties. A combination
of phononic, electro-optic, and optical nonlinear properties in
those materials would make them invaluable in fabricating inte-
grated, nonlinear acousto-optic devices. However, it appears
that many of the PT-relaxors have not been studied in the
context of their optical nonlinearity. Recent work with pow-
dered Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystals indicated
promising second-order nonlinear properties, which could be
used in frequency conversion [7]. However, the efficiency of
frequency conversion is often hindered by the dispersion-caused
mismatch between phases of the nonlinear polarization and that
of generated new wave(s). Taking second harmonic generation
(SHG) as an example, the phase mismatch ∆k = k2 − 2k1, where
k1 = 2πnω/λ1 and k2 = 2πn2ω/λ2 are the wave vectors of the

fundamental beam (FB) and second harmonic (SH), and nω , λ1

and n2ω , λ2 are refractive indices and wavelengths of the FB and
SH, respectively. To achieve phase matching and ensure efficient
interaction, one may make use of the birefringence of the nonlin-
ear crystal. This so-called birefringent phase matching involves
appropriate choice of polarization of the interacting waves [8],
their propagation direction, and the temperature of the crys-
tal. For instance, in the transmission window (0.45–5.5 µm) of
a tetragonal 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 (PMN-38PT)
crystal at room temperature, the birefringent phase matching
can only be realized in the mid-infrared at λ1 = 3.261 µm or
λ1 = 4.598 µm, depending on the type of nonlinear interaction.

An alternative and more flexible approach involves spatial
periodic modulation of the quadratic nonlinear susceptibility
tensor χ(2), which ensures that the relative phase between inter-
acting waves is always less than π. Therefore, the energy keeps
flowing from the FB to the SH. This is the so-called quasi-phase
matching (QPM) technique [9,10]. In ferroelectrics, spatial non-
linearity modulation is realized by creating periodic ferroelectric
domain structures through patterned electrodes biased with high
external voltage along a crystal’s polar axis [11]. Unfortunately,
electric field poling in PMN-PT crystals remains challenging.
These crystals are prone to cracking due to the large strain
induced by the electric field [12]. In addition, undesired 90°
domains can be formed during electrical poling [13,14]. Other
methods, e.g., electron beam poling, are not practical for fabri-
cating QPM structures due to the limited depth of the inverted
domains [15]. Significant progress was achieved very recently,
in which 3D domain inversion was realized in PMN-PT crys-
tals with the femtosecond laser poling technique [16]. However,
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Fig. 1. (a) Front view of the PMN-38PT sample. The 3.4 mm (x)
× 2.4 mm (y) × 0.7 mm (z) crystal was supported by glass plates
to simplify its handling. The input polarization of the FB along
the z ([001]) and x ([100]) axes is denoted as e (extraordinary) and
o (ordinary), respectively. The location of both QPM gratings is
indicated by white rectangular box. (b) Magnified section of the
sample with main QPM gratings. Permanent damages (black spots)
are induced for easy alignment.

those structures were restricted to very limited areas. Subse-
quently, to the best of our knowledge, QPM interaction has
never been demonstrated in PMN-PT crystals.

In this work, we study experimentally SHG in PMN-38PT
crystals. To this end, we create periodic ferroelectric domain
structures (nonlinear gratings) in the crystal via the laser pol-
ing technique [17–21], and demonstrate collinear quasi-phase
matched SHG. Using the measured output power of the SH
signal, we were able to determine the relative strengths of the
χ(2) coefficients in this crystal as well as provide a quantita-
tive estimate of their values. This work constitutes the first ever
quantitative measurement of the quadratic nonlinearity in the
PMN-PT crystal. Our results open the possibility to develop a
class of hybrid devices combining the excellent piezoelectric
and optical properties of relaxor-based ferroelectric crystals.

We used PMN-38PT crystals grown via a modified Bridgman
technique [22]. The [001] direction of the single crystal was ori-
ented by using the rotating orientation x ray diffraction method
[23]. The bulk single crystal was then diced into small plates,
cutting perpendicular to the [001] direction (z-cut) with side cuts
parallel to the (010) and (100) planes. All facets of the plates
were polished to optical grade. To fabricate single-domain PMN-
38PT crystals without cracking, a thermal annealing treatment,
followed by a high-temperature poling process, was applied [16].
Figure 1 shows the front view (xoz) of the mounted sample. The
fact that the nonlinear gratings themselves are all but invisi-
ble serves as a proof that our optical writing process involves
domain reversal without distorting the crystalline structure.

In this work, we realized the χ(2) modulation by laser-induced
ferroelectric domain inversion. In this approach, an infrared
short pulse beam tightly focused inside the crystal with its energy
below the damage threshold (here less than 0.12 J/cm2) locally
flips its spontaneous polarization [16,19–21]. We used a fem-
tosecond oscillator (MIRA, Coherent) to generate laser pulses
with a wavelength of 800 nm, pulse duration of 180 fs, and
repetition rate of 80 MHz. The pulse energy of the laser beam
can be continuously adjusted from 0 nJ to 5 nJ by utilizing a
half-wave plate followed by a polarizer. The laser beam was
then focused into the monodomain PMN-PT crystal by a ×20
microscope objective (NA= 0.4). The sample was mounted on
an xyz-translation stage with stepper motor actuators. With a
combination of the stage and an optical shutter, 3D ferroelec-
tric domain structures could be inscribed, starting from 200 µm
beneath the+z surface, and moving deeper inside the crystal.
By using 1 micron or less spatial separation between individ-
ual laser beam spots, the inverted domains merged, forming

Fig. 2. Nonlinear microscopy images of the fabricated periodic,
inverted domain structures. The grey planes represent regions of
inverted spontaneous polarization. (a) Domain structure QPM1,
with period of 3.5 µm and total length of 2 mm. (b) Domain structure
QPM2 with period of 7.1 µm and total length of 1.13 mm.

rectangular (45 µm × 100 µm) stripes in the xoz plane. We fab-
ricated two periodic domain structures with different periods
and lengths. The first one (QPM1) is 2 mm long with a period
of 3.5 µm, and the second one (QPM2) is 1.13 mm long with
a period of 7.1 µm. The periods of both structures were cho-
sen such that they could operate in the quasi-phase matched
regime at central wavelengths of 1037 nm and 1254 nm for
QPM1 and QPM2, respectively. The periodic domain structures
were visualized using nonlinear Čerenkov microscopy, which
is sensitive to abrupt changes of χ(2) nonlinearity [24]. Both
nonlinear structures are depicted in Fig. 2.

We measured the intrinsic optical losses introduced by the
QPM structures by comparing the transmission of a weak light
beam through the grating region with that of pristine crystal.
The losses were less than 0.1 dB/cm at 1260 nm. This confirms
that the laser poling did not introduce any amorphization of the
material, which typically leads to strong light scattering [25].

In the SHG experiments, the FB was delivered by the Coher-
ent Chameleon Ultra II+ compact c-OPO system with a pulse
duration of 200 fs and repetition rate of 80 MHz. The lin-
early polarized FB was focused onto the structure (xoz plane)
with either 45 mm or 25 mm focal length lens, and propa-
gated along the y direction. The corresponding beam widths
(at the e–2 level) were 24 µm and 16 µm, respectively. The wave-
length of the FB was tunable in the range of 1000–1600 nm.
The input polarization could be rotated to coincide with ordi-
nary [100], extraordinary [001], or mixed [101] directions. The
average power of the SH (P2ω) was recorded at the exit of the
sample. The average power of the FB (Pω) was kept constant
at 100 mW. As the PMN-38PT crystal belongs to the 4 mm
symmetry group, the χ(2) tensor has only three non-zero ele-
ments (d31, d33, and d15). Thus, three different SHG processes
are possible, depending on the polarization of the FB and SH.
Denoting ordinary and extraordinary polarization by “o” and
“e,” respectively, these interactions are ee → e (mediated via the
d33 coefficient), oe → o (mediated via the d15 coefficient), and
oo → e (mediated via the d31 coefficient). For instance, for the
oe → o interaction, in which one ordinary and one extraordinary
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 Fig. 3. Quasi-phase-matched SHGs in the PMN-38PT crystal.

Output SH power as a function of the wavelength and polarization
of the FB for (a) QPM1 and (b), (c) QPM2. The curves represent the
sin2(∆kle/2)/(∆kle/2)2 fit with le = 0.7lt. The input beam diameter
was 16 µm in (a) and (c) and 24 µm in (b). (d) Output SH power
versus input power generated in QPM2. The input power of the FB
was set at 100 mW in (a)–(c).

fundamental photon combine creating a single, ordinarily polar-
ized photon at doubled frequency, the phase matching condition
reads: ∆k = k1e + k1o − k2o + mQ = 0. Here, k1e and k1o are wave
vectors of the extraordinary and ordinary polarized components
of the FB, while k2o is the wave vector of the SH emitted with
ordinary polarization; Q = 2π/Λ represents the basic reciprocal
vector of the nonlinearity modulation with period Λ, while m is
an integer indicating the order of the nonlinear interaction.

Figures 3(a)–3(c) depict the measured power (its ordinary and
extraordinary components) of the SHG in each structure, as a
function of the wavelength and polarization state of the input
FB. The bell-shaped tuning curves in each graph correspond
to three different nonlinear interaction processes, and each SH
peak reflects the relevant QPM resonance. The plots in Figs. 3(a)
and 3(b) represent the first-order (m= 1) nonlinear interaction in
QPM1 and QPM2, respectively. The graph in Fig. 3(c) depicts
the second-order nonlinear interaction (m= 2) in QPM2. As
the period in QPM2 is roughly two times longer than that of
QPM1, the resonance peaks in the second-order interaction in
the former structure are very close to those measured in the first-
order interaction in the latter. For completeness, the graph in
Fig. 3(d) depicts P2ω in QPM2 as a function of Pω . As expected,
the quadratic relation is evident.

The tuning curves in Figs. 3(a)–3(c) were obtained by fit-
ting the sin2(∆kle/2)/(∆kle/2)2 function to the experimental
data. The fitting parameter le represents the effective interac-
tion length determined by two factors, namely the walk-off

length and spectral width of the input pulse. The former,
lt = τ/[v−1

g (2ω) − v−1
g (ω)], with τ being the pulse length, repre-

sents the difference between group velocities of the FB (vg(ω))
and SH (vg(2ω)), and consequently defines the region of coherent
interaction between both waves. Together with the spectral width
of the input pulse they contribute to the broadening of the tun-
ing curves. The broadening may further increase by fabrication
errors in the nonlinearity pattern [26].

We will use the experimental results to estimate the nonlinear
coefficients using the following formula for P2ω in the short
pulse regime at resonance [27]:

P2ω =
16π2d2

eff P2
ω lttrep

nωn2ωcε0λ
3
1τ

L
b

, (1)

where deff is the effective nonlinear coefficient, trep is the repeti-
tion period, L is the length of the periodic structure, c is the speed
of light, ε0 is the vacuum permittivity, τ is the pulse length, b
is the confocal parameter of the input beam, and nω and n2ω are
refractive indices of the FB and SH, respectively. The walk-off
length lt and refractive indices were evaluated from the Sell-
meier formula for the PMN-38PT crystal [28]. For the oo → e
resonance, lt = 105 µm and 185 µm at 1035 nm and 1260 nm,
respectively.

The effective nonlinear coefficient deff depends on the element
of the χ(2) tensor, the duty cycle of the nonlinearity modulation
(D), and the order (m) of the nonlinear interaction [29]. For the
oo-e interaction, deff has the following form:

deff =
2d31

πm
sin(πmD). (2)

The duty cycle in our laser-fabricated structures was close to 0.5
in the case of QPM1 and 0.25 for QPM2, respectively. It is clear
from Eq. (2) that duty cycle D= 0.5 corresponds to the strongest
effective nonlinearity. In an optically poled domain structure, the
duty cycle could be adjusted by carefully controlling the domain
width within the poling period. For instance, the domain width
can be adjusted by changing the numerical aperture of the laser
beam focusing lens. In addition, in an optically poled domain
structure with relatively large poling period, the duty cycle can be
increased by inscribing closely two or more groups of domains,
so they can merge, thereby forming much thicker objects.

The experimental results are summarized in Table 1, which
depicts the P2ω recorded at each QPM resonance. By compar-
ing P2ω in all interaction regimes, one can determine the relative
magnitudes of all nonlinear coefficients. We found that d15, d31,
and d33 satisfy the following relations: |d15 | ≈ 0.4|d31 | and |d33 |

≈ 0.17|d31 |. These values are expected to be rather accurate, as
they involve the power ratios measured in the same experimen-
tal conditions. A more careful approach is needed while using
Eq. (1) to find an absolute value of the nonlinear coefficients,
as the result may be strongly affected by the uncertainty of the
parameters of the laser beam. When using Eq. (1), we find an

Table 1. Experimental Parameters and Results of Quasi-Phase Matched SHs in the QPM Structures, Where m Is the
Interaction Order, f Is the Focal Length, and P2ωIs the Average Power of the SH

Structure m f (mm) ee-e (via d33) oe-o (via d15) oo-e (via d31)
P2ω (µW) λ1 (nm) P2ω (µW) λ1 (nm) P2ω (µW) λ1 (nm)

QPM1 1 45 2.06 1060 47.16 1080 71.38 1035
QPM2 1 25 0.81 1310 49.67 1350 64.31 1260
QPM2 2 45 0.77 1065 12.16 1085 24.22 1040
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average value of the nonlinear coefficient as d31 ≈ 1.3 pm/V.
To corroborate this result, we conducted a control experiment
in a calcium barium niobate (Ca0.28Ba0.72Nb2O6, CBN) crystal,
whose nonlinearity and refractive indices (via the Sellmeier for-
mula) are known [30,31]. To this end we optically fabricated a
100-µm-long nonlinear grating with period of 8.8 µm and duty
cycle of 0.35 in the CBN sample. Then, using the same focusing
conditions as in the PMN-38PT crystal case, we realized the
quasi-phase matched SHG via ee → e interaction at 1170 nm.
Using the measured P2ω in Eq. (1) gives d(CBN)

33 ≈ 7.0 pm/V. This
agrees reasonably well with the reported earlier value of 9 (±2)
pm/V [30] and, hence, confirms the validity of our PMN-38PT
crystal results.

In conclusion, we demonstrated experimentally, for the first
time, quasi-phase matched, collinear SHG in a ferroelectric
PMN-38PT crystal. By varying the input linear polarization,
we observed three nonlinear interaction processes. The SH
power measured at QPM resonances allowed us to determine the
relative strength of all quadratic nonlinearity tensor elements.
Finally, we estimated the magnitude of the largest nonlinear coef-
ficient, d31, at the level of 1.3 pm/V. This result was validated
by conducting a control experiment with a CBN crystal with
known nonlinearity. This is the first quantitative measurement
of nonlinear properties of a PMN-38PT crystal. While weaker
than expected, the nonlinearity of the PMN-38PT material may
still allow integration of piezoelectric and nonlinear functional-
ities in a single crystal. Consequently, our results could be also
relevant for other tetragonal PT-relaxors.
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