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We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made
power-scaled mode-locked fiber oscillator as the pump source. By coupling the sub-100 fs mode-locked pulses into a
nonlinear photonic crystal fiber (NL-PCF), the exited spectra have significant nonlinear broadening and cover a spectra
range of hundreds of nm. In experiment, by reasonably optimizing the structure parameters of NL-PCF and regulating
the power of the incident pulses, femtosecond laser with tuning range of 900–1290 nm is realized. The research approach
promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the
direction of simplicity and ease of implementation.
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1. Introduction
Over the last several decades, ultrashort pulse lasers with

diverse laser characteristics[1–3] have been extensively stud-
ied and developed so as to meet multifarious requirement of
fundamental science and application fields.[4,5] In addition to
power scaling,[6] energy increment,[7] and pulse shortening,[8]

wavelength tuning of the laser source is also an important re-
search subject for laser community, which enables wide use
of ultrafast lasers in different fields of discipline.[9–11] For in-
stance, in multi-photon fluorescence microscopy, tunable fem-
tosecond lasers operating in the near-infrared spectral regime
enable the excitation of most of the applicable fluorescent pro-
teins. As a result, these kinds of lasers are much desired in
vivo noninvasive dynamic observations due to performance ad-
vantages in promoting imaging resolution, increasing penetra-
tion depth, and improving visualization. In addition, in brain
science, life science, etc., due to the typical peak absorption
at 920 nm, so femtosecond lasers centered 920 nm are able
to efficiently excite most of the frequently-used bio-sensors,
such as Alexa Fluor 488, enhanced green fluorescent proteins
(EGFP), and GCaMP6 indicator,[12–14] and have important re-
search significance.

In general, besides optical parametric oscillation
(OPO),[15] supercontinuum generation (SCG),[16] Cherenkov
radiation (CR),[17] and passively mode-locking (PML),[18] the
realization scheme of wideband tunable femtosecond lasers
also contains nonlinear spectra broadening in nonlinear fiber

and the followed effective spectral selectivity technique. The
operation principle can be described as following: when the
femtosecond pulses propagate along a nonlinear fiber, due to
the high peak power and the resultant nonlinear effects, such
as self-phase modulation, self-steeping, and stimulated Ra-
man scattering, the exited spectra from the nonlinear fiber are
broadened to hundreds of nm. At the same time, the spectra
also have high coherence. Subsequently, by effective slicing
in the spectral domain using a spectra filter with optimal trans-
mission wavelength and bandwidth, femtosecond laser with
center wavelength different from that of the incident pulses
can be generated in a wide tuning range. In comparison with
OPO, SCG, CR, and PML, the above technical scheme has
lots of advantages in reliability, compactness, and ease of op-
eration. Moreover, the above technical scheme overcomes the
precise synchronization in OPO laser, low coherence in SCG,
selective dispersion in CR, and limited wavelength tuning in
PML, etc.

Based on the above mentioned operation principle,
by propagating the amplified Yb-fiber femtosecond pulses
through a nonlinear photonic crystal fiber (NL-PCF), laser
output tunable from 1030 nm to 1215 nm was reported.[19]

With a high-average-power Er-fiber amplifier as the pump
source, laser output tunable from 1.3 µm to 1.7 µm has been
realized.[20] Recently, in combination with frequency doubling
in PPLN, a tunable laser source in the visible spectral re-
gion has also been presented.[21] However up to now, these
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research works mainly focused on the use of amplified fem-
tosecond laser configurations.[19–22] In comparison with fiber
chirped pulse amplifiers, mode-locked femtosecond fiber os-
cillators with comparable power output have advantages of
compact configuration and low-cost. More importantly, the
mode-locked fiber lasers have negligible nonlinear dispersion,
much higher pulse fidelity and can potentially facilitate the
generation of nonlinear spectra with much higher coherence
and much wider spectra coverage. Therefore, using power-
scaled mode-locked fiber oscillators as the pump source rather
than the complicated amplification configurations provides an
effective solution and technical proposal to generate wideband
tunable femtosecond laser source with simplicity and ease of
implementation, and has important research significance.

Therefore in this work, utilizing a home-made sub-100 fs
power-scaled mode-locked fiber oscillator as the pump source,
we innovatively carry out an experimental research for the
generation of wideband tunable femtosecond laser. By explor-
ing the effect of NL-PCF structure parameters and incident
pulse power on nonlinear spectral broadening and laser char-
acteristics of the new wavelength pulse generation, a tuning
range of 390 nm is experimentally obtained.

2. Experimental setup
The experimental setup used to generate wideband tun-

able femtosecond laser output is schematically shown in
Fig. 1. It mainly consists of a home-made high-average-
power mode-locking fiber oscillator, 1000 lines/mm trans-
mission grating-pair, a half-wave plate (HWP), a polarization
beam splitter (PBS), a section of commercially available NL-
PCF, and spectral filters (SFs) with different central wave-
lengths. The mode-locked fiber oscillator can stably deliver
4 W of average power at 63.2 MHz repetition rate. The cen-
tral wavelength lies at 1044 nm and the spectra span from
1024 nm to 1064 nm. Laser pulses can be compressed to
sub-100 fs from 7.4 ps. After the transmission grating-pair
compressor, average power of 3.2 W is obtainable. Then, the
femtosecond pulses are coupled into NL-PCF with the use of
a 12 mm focal length lens. The average power can be adjusted
based on the combination of HWP and PBS. The incident fem-
tosecond pulses cause significant spectral broadening with its
propagation in NL-PCF and the exited spectra present a multi-
peak distribution that serves as the direct spectral source for
wideband tunable femtosecond laser generation after the spec-
tral filter. Except for the incident power, for generation of
wideband tunable femtosecond laser, the pulse width is also
an important influence factor. In this work, considering that
the pulse duration of the incident laser nearly approaches to
its transform-limited width, we concentrate our research work
on the effect of the NL-PCF structure parameters and inci-
dent power on the tuning range. Under the equivalent incident

power, pulses with shorter temporal widths are beneficial for
realization of new wavelength laser with much shorter pulse
width and wider tuning range.

SF SL

power scaled mode

locked fiber laser

PBSHWP

APE 

PulseCheck
OSA 

λ

SLNL PCF

compressor

Fig. 1. Experimental setup of the wideband tunable femtosecond laser
source. HWP: half-wave plate; PBS: polarization beam splitter; SF:
spectral filter; OSA: optical spectrum analyzer; SL: spherical lens; NL-
PCF: nonlinear photonic crystal fiber.

3. Results and discussion
In order to study the influence of the NL-PCF parameters,

such as length and mode field diameter (MFD), on spectral
broadening characteristics of the incident pulses, we imple-
ment comparative experiment research using NL-PCFs with
different parameters. It contains two cases: one is the same
length, but different MFDs; and the other is the same MFD,
but different lengths. Figure 2 illustrates the experiment re-
sults.
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Fig. 2. (a) Initial spectra of the incident pulses; nonlinear broadened
spectra for (b) PCF with 8 µm MFD and 11 cm length, (c) PCF with
4.5 µm MFD and 7 cm length, and (d) PCF with 4.5 µm MFD and
11 cm length.

From Figs. 2(b) and 2(d), we can clearly see that under
the same length condition, the wider spectra broadening is ob-
tained for the PCF with smaller MFD when the coupled power
is 1.1 W. The spectra coverage ranges from ∼ 100 nm (MFD:
8 µm) to ∼ 400 nm (MFD: 4.5 µm) as a result of the enhanced
nonlinear effects. Moreover, as shown in Figs. 2(c) and 2(d),
increasing the interaction length is also an effective method to
broaden the output spectrum under the same coupled power of
1.1 W. In experiment, due to large coupling losses, and at the
same time so as to broaden the spectra as wide as possible, we
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use NL-PCF with 4.5 µm MFD and length of 13 cm for gener-
ation research of wideband tunable femtosecond laser pulses.

Figures 3(a)–3(h) respectively present the broadened out-
put spectra exited from the utilized 13 cm-long NL-PCF. The
output power from NL-PCF is also respectively labeled in the
upper right corner of each spectra distribution. Under the max-
imum 3.2 W incident power, 1.23 W coupled output power
can be obtained behind NL-PCF. As shown in Figs. 3(a)–3(d),
for the relatively low coupled power case, the spectra broad-
ening is not prominent. However, as the coupled power ex-
ceeds 500 mW, the spectra exited from NL-PCF significantly
broaden with the increment of power. For 1.23 W coupled
output power, the left-most and right-most spectral lobes are
respectively shifted to 816 nm and 1300 nm. However, as
the femtosecond laser propagates along NL-PCF, due to the
coupling losses, dispersion, etc., the nonlinear effects induced
spectra broadening are relatively weak in comparison with
the quasi-linear propagation part in PCF. As a result, only a
very small fraction of the incident power can convert into new
wavelength region, and most of the power still stays in the
original input wavelength. Therefore, as shown in Fig. 3, the
relative intensity of the newly generated spectra components
is low compared with that of the input wavelength. In exper-
iment, we find that wider incident pulse spectra are not ben-
eficial for improving conversion efficiency of the new wave-
length spectra components. As shown in Fig. 3, only center
parts of the incident spectra decrease in amplitude. The edge
parts have no apparently changes during the propagation in
NL-PCF. Therefore, we conclude that by reasonably optimiz-
ing the mode-locked spectrum, obtaining high density spectra
distribution, and simultaneously reducing the repetition rate
under the comparable power output condition, the new spectra
components will increase in amplitude.
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Fig. 3. Output spectra corresponding to different coupled output power.

In experiment, we selectively filter the representative
spectra lobes from the nonlinear broadening spectra using
the SFs with different center wavelengths and spectral band-
widths. The filtered spectra are respectively centered at

902.1 nm, 923 nm, 950.7 nm, 971.9 nm, 998.9 nm, 1100 nm,
1151.2 nm, 1198.6 nm, 1251.6 nm, and 1290.1 nm, which are
all colored shown in Fig. 4.
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Fig. 4. Tunable spectra output from the presented wideband tunable
femtosecond source. The red dashed line shows the incident spectra.

Figure 5 shows the available maximum average power for
different central wavelengths. Both central wavelength and
average power are measured after the spectral filtering. As
shown, the average power is relatively low at different central
wavelengths. For example, at 1290.1 nm, the average power
is 6 mW. The corresponding energy conversion efficiency is
estimated to be 0.48%. Further power increment is feasible
by adopting SFs with high transmission efficiency and width
transmission bandwidths. In addition, by re-shaping beam
spot of the incident laser and optimizing parameters of NL-
PCF and coupling lens, the nonlinear energy conversion effi-
ciency can be potentially promoted.
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Fig. 5. Available maximum average power for different central wave-
lengths.

For laser pulses centered at 902.1 nm, 923 nm, 950.7 nm,
971.9 nm, 998.9 nm, and 1100 nm, the measured pulse widths
are respectively 165 fs, 167 fs, 169 fs, 206 fs, 202 fs, and
221 fs assuming Gauss fitting. Figure 6 shows the intensity
autocorrelation traces corresponding to different central wave-
lengths. In addition, the temporal widths for the pulses with
central wavelengths beyond 1150 nm cannot be measured due
to the limited measureable wavelength range of our available
intensity auto-correlator.
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Fig. 6. Intensity autocorrelation traces corresponding to different central wavelengths. The colored red lines represent Gauss fitting.

4. Conclusion
In this paper, we present a simplified configuration used

for generating wideband tunable femtosecond laser output
based on our home-made compact and cost-benefit high-
average-power fiber oscillator as the pump source. By exper-
imentally optimizing the structure parameters of NL-PCF and
the power of the incident pulses, wideband tunable femtosec-
ond laser output with tuning range of 390 nm has been ob-
tained. Although the measured new wavelength femtosecond
laser has low output power, we believe the research method is
worth considering and should be explored by the researchers
in this field. Moreover, by optimizing spectra of the incident
pulses, reducing the repetition rate of mode locking, and op-
timizing the parameters of NL-PCF and coupling lens, the
power conversion efficiency for the femtosecond laser with
wavelength out of traditional laser gain media can be further
improved.
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[9] Hüttmann G, Yao C and Endl E 2005 Med. Laser App. 20 135
[10] Liu X M, Svane A S, Lagsgaard J, Tu H H, Boppart S A and Turchi-

novich D 2016 J. Phys. D: Appl. Phys. 49 023001
[11] Hoover E E and Squier J A 2013 Nat. Photon. 7 93
[12] Nakai J, Ohkura M and Imoto K 2001 Nat. Biotechnol. 19 137
[13] Wang P H, Xu X, Guo Z R, Jin X J and Shi G H 2019 Appl. Phys.

Express 12 032008
[14] Zong W J, Wu R L, Li M L, Hu Y H, Li Y J, Li J H, Rong H, Wu H T,

Xu Y Y, Lu Y, Jia H B, Fan M, Zhou Z, Zhang Y F, Wang A M, Chen
L Y and Chen H P 2017 Nat. Methods 14 713

[15] Song J J, Meng X H, Wang Z H, Wang X Z, Tian W L, Zhu J F, Fang S
B, Teng H, Wei Z Y 2019 Chin. Phys. Lett. 36 124206

[16] Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J and Tünnermann
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