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A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond
pulses from transient-grating frequency-resolved optical gating (TG-FROG) traces. We use theoretically generated TG-
FROG traces to complete supervised trainings of the convolutional neural networks, then use similarly generated traces not
included in the training dataset to test how well the networks are trained. Accurate retrieval of such traces by the neural
network is realized. In our case, we find that networks with exponential linear unit (ELU) activation function perform better
than those with leaky rectified linear unit (LRELU) and scaled exponential linear unit (SELU). Finally, the issues that need
to be addressed for the retrieval of experimental data by this method are discussed.

Keywords: transient-grating frequency-resolved optical gating, convolutional neural network, activation func-
tion, phase retrieval algorithm
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1. Introduction

Generation of femtosecond (10−15 s) pulses allows an ul-
trafast revolution in science and technology.[1] One of the most
significant applications of femtosecond laser pulses, especially
few-cycle femtosecond pulses, is to generate isolated attosec-
ond pulses (1−18 s) via high-order harmonic generation in gas
targets.[2,3] In experiments, it is necessary and important to
determine the pulse duration as well as detailed temporal pro-
file of the electric field of a few-cycle pulse. For nanosec-
ond pulses, the pulse width can be measured directly using a
photodiode, while it cannot for picosecond and shorter pulses.
Autocorrelation[4] can measure the pulse width of pico- and
femtosecond pulses, but does not give details of their temporal
profiles. One of the popular techniques employed in ultrafast
research labs to characterize femtosecond pulses nowadays is
the frequency-resolved optical gating (FROG) which is appli-
cable for pulses over a wide range of wavelengths[5] and close
to one optical cycle, which is 2.67 fs for the center wavelength
at 800 nm.

FROG measurement requires splitting the pulse to be
characterized into two variably delayed replicas. The two

pulse replicas are then crossed in an instantaneously respond-
ing nonlinear-optical medium. The nonlinear signal produced
by the two pulses is usually measured by a spectrometer, and
as the delay between the two pulses changes, a series of spec-
tra of the nonlinear signal are recorded. Such spectra compose
a two-dimensional spectrogram with delay (time) as one axis
and wavelength or frequency as the other. This spectrogram
is commonly named FROG trace, which contains all the infor-
mation necessary to describe the measured pulse. However,
the pulse envelope, electric field, or pulse width cannot be cal-
culated or derived from the FROG trace directly. It requires
a non-trivial iterative algorithm to retrieve the spectrum and
spectral phase, or equivalently, the electric field temporal pro-
file and phase, of the pulse from the recorded trace.[5,6] Using
the traditional FROG algorithm to retrieve the temporal profile
and phase of the pulse requires considerable computing power
and takes a long time. To this end, an alternative method to
the phase retrieval from transient-grating FROG (TG-FROG)
trace is demonstrated using a convolutional neural network
(CNN). Similar approach has been shown to be successful for
SHG-FROG trace retrieval[7] and attosecond streaking trace
retrieval.[8]
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A FROG spectrogram or trace is a two-dimensional (2D)
array and each element contains the FROG signal strength at
the corresponding frequency and delay time. This array may
be considered as an image (Fig. 1), in which each pixel corre-
sponds to an element in the 2D array. The inversion of such
traces to acquire the information of the femtosecond pulses
may be considered as image recognition because different
pulses produce FROG traces with different shapes, structures,
sizes, tilts or slopes, and so on (Fig. 1). For image recognition
tasks, neural networks[9,10] are able to achieve better learning
effects by keeping important parameters and removing a large
number of unimportant parameters. We train a convolutional
neural network to learn the inverse mapping of the TG-FROG
measurement.[11] For phase retrieval of femtosecond pulses,
the neural network is used to find the mapping function be-
tween the FROG trace and the pulse electric field, which is
achieved by training the network with FROG traces of pulses
with known electric fields and phases. FROG traces serve as
the inputs to the network, and the time domain electric fields
and phases of the pulses are the output. We choose CNN be-
cause it is one of the most popular choices in image recogni-
tion tasks. Such a neural network has a multilayer structure.
Typical CNN structure includes the input layer, convolution
layer, pooling layer, and fully connected layer. Each layer
contains a number of neurons that are connected to the pre-
vious layer. A neuron generates an output signal when the
input exceeds a certain threshold. During a training process,
the CNN constantly updates the weight of each neuron, and
try to make the features represented by each neuron match
the desired output.[9,10] In CNN, data features are extracted
by convolution, and an activation function introduces nonlin-
ear factors. The pooling layer compresses the input feature
map and extracts deeper features. Finally, a fully connected
layer is used to connect the extracted features.

2. Transient-grating frequency-resolved optical
gating
The signal recorded in a TG-FROG trace is produced

via four-wave-mixing (FWM) which is a third-order nonlin-
ear process.[11,12] The input beam is divided into three identi-
cal beams. The phase matching is achieved by arranging the
three input beams and one signal beam (the output) so that
their points of intersection with a plane parallel to the focusing
lens form the vertices of a rectangle. The three input beams are
focused at one point in a piece of fused silica as the nonlinear
medium by a concave mirror. Two of the beams are overlapped
in space, and the pulses are overlapped in time as well. The
TG signal strength versus the delay of the third input beam
yields the (third-order) intensity autocorrelation. By record-
ing the spectra of the TG signal as a function of the delay, a

TG-FROG trace is obtained which contains the necessary in-
formation for complete and unambiguous retrieval of the input
pulse. The expression for the TG-FROG trace is

ITGFROG(ω,τ) =

∣∣∣∣∫ ∞

−∞

E (t)2 E∗(t − τ)exp(-iωt) dt
∣∣∣∣2 ,

where ITGFROG is the TG-FROG trace, E(t) is the electric field
of the input pulse, τ is the delay between the third pulse and
the other two.[6,11] Such an expression represents the well-
known phase retrieval problem, which is non-trivial and can-
not be solved directly. Iterative trial-and-error algorithms have
been employed to retrieve the electric field and phase of the
pulse from the trace, but the calculations are usually time-
consuming yet not as accurate as one might expect. On the
other hand, through a trained neural network, the calculation
time is greatly shortened and the retrieval is almost instant.

A Fourier-transform-limited pulse appears as a symmet-
ric and narrow peak in the FROG trace. When dispersion is
added to the spectral phase of the pulse so that the pulse be-
comes chirped, the peak in the trace becomes widened and
tilted, as shown in Fig. 1. When the second-order dispersion
is added, the pulse is linearly chirped and the peak is tilted.
Higher order dispersion makes the pulse nonlinearly chirped.
The third-order dispersion produces small ripples on one side
of the main pulse and changes the main peak envelope as well.
In order to identify the pulse correctly from the trace, the neu-
ral network needs to learn the relationship between the phase
of the pulse and the structure of the peak in the trace. This
learning process may be understood as an analysis of the im-
age characteristics of the trace.

3. Convolutional neural network
To train the neural network, we establish a forward pro-

gram to produce a sufficient number of traces from pulses with
known parameters. The pulses with 750 nm center wavelength
have pulse widths ranging from 4 fs to 9 fs. Actual pulses tend
to have complex dispersion but higher order dispersion is usu-
ally small so we only add dispersions of the 2nd to 5th order for
simplicity without losing the generality. Figure 1 shows the
traces, electric fields, and temporal phases of pulses with dif-
ferent order dispersions, whose transform-limited pulse widths
are all 6 fs. It is shown in Fig. 1 that the 2nd and 4th order dis-
persions cause a symmetrical change in the pulse envelop in
the time domain, and the traces are tilted to one side, while
the 3rd and 5th order dispersions introduce small ripples to one
side of the main pulse envelop.

The CNN used for FROG phase retrieval consists of four
convolution layers with filter sizes of 2× 2. The number of
filters for each layer of convolution is 128, 64, 32, and 32, re-
spectively. The stride parameter of each filter is set to 1 so
the convolutional block outputs a series of feature maps with
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dimensions identical to the input one. In each layer of con-
volution calculation, an exponential linear unit (ELU) is used
to introduce nonlinear factors into the neural network. In or-
der to compress the number of data and parameters, reduce
overfitting, and improve the fault tolerance of the neural net-
work, max pooling of 2×2 is used in each layer of convolution
computation after the ELU. The neural network has two fully
connected layers with sizes of 512 and 1024 respectively after
four convolutional layers in order to establish contact with the
output representing the intensity and phase of the femtosec-

ond pulse corresponding to the FROG trace. The inputs are
FROG traces with size of 512× 512. The size of the output
array is 1024× 1 (512+ 512) which contains the spectral in-
tensity with length of 512 and the phase with length of 512.
Our CNN structure is shown in Fig. 2. The network is trained
using the Tensorflow Python library (version 1.13) running on
a graphics card for increased speed. The supervised learn-
ing converges to a solution after it optimizes weights for all
the 3600 sample traces more than 60000 times, running in a
NVIDIA RTX 2060S GPU card.
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4. Results
After training the network with a set of 3600 samples, we

apply the trained model to FROG-traces that have not been
added to the training set, as shown in Fig. 3. The output time
domain electric field is compared with the electric field used
to produce this particular trace by the forward program. The
main peak and the corresponding phase of the pulse restore
the real electric field very well, but the small pulses around the
main peak are not reproduced well, with a certain amount of
noise. Similarly, the retrieved phase near the main peak accu-
rately shows the oscillation of the phase, but the value is dif-
ferent from the real phase. However, the oscillations are not
well restored away from the main peak. This is because the
model pays more attention to the learning of high-intensity

values during the training, and treats low-intensity informa-
tion as noise, which makes the learning of low-intensity in-
formation insufficient. This phenomenon does not affect our
prediction of the pulse, and we will try to solve this problem
in follow-up works. The loss and learning rates are shown in
Fig. 4. The loss represents the error between the learning result
and the actual value in a supervised learning. The average loss
of the training samples is 2×10−3 after training in our neural
network, which is fairly good. The learning rate determines
whether the objective function converges to a local minimum
and when it converges to the minimum, the learning rate is
stable at 10−5 within 50000 steps. We use root mean squared
error (RMSE) to verify the error between the predicted result
and the actual pulse and phase, and show them in each image.
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In our neural network we use ELU as the activation func-
tion to introduce nonlinearity, whose function form and curve
are shown in Fig. 5. ELU is an activation function based on
rectified linear unit (RELU) that has an extra constant α that
defines function smoothness when inputs are negative. In our
neural network training, we set α = 1. Advantages of ELU
include tending to converge faster than RELU and better gen-
eralization performance than RELU. ELU is fully continuous
and differentiable, does not have a vanishing gradients prob-
lem, and does not have an exploding gradients problem, and
dead RELU problem. ELU is slower to compute, but it com-
pensates this by faster convergence during training. The per-
formance of the ELU function in our neural network training
meets our expectations.
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Fig. 5. ELU activation function expression and curve.

We compare the prediction of pulse envelop and phase
by neural networks trained under several different activation
functions, including leaky rectified linear unit (LRELU) and
scaled exponential linear units (SELU). Their training results
are shown in Fig. 6. Each network has been trained enough

times to make the learning rate saturated. The result of using
the SELU function to predict (Fig. 6(a)) shows that the width
of the main pulse is slightly larger, but the slightly sharper
trailing edge as shown in the actual pulse (Fig. 3(b)) is not ob-
served in the predicted result, and the oscillation of the phase is
not well learned. The result of LRELU (Fig. 6(b)) shows that
the main peak is split, which is wrong, and the phase oscilla-
tion is reproduced better than SELU, but the value is smaller
than the actual pulse. In the application to traces not in the
training data set, the neural networks with these two activation
functions do not achieve results as good as ELU. At the same
time, the RMSE results also show that using the ELU activa-
tion function performs best in the retrieval of ultrashort laser
pulses.
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Fig. 6. Pulse envelops and phases retrieved by the neural network with
(a) SELU activation function and (b) LRELU activation function.

Recently, a new activation function, Gaussian error lin-
ear unit (GELU), was proposed, which obtained better results
than the ELU function in the learning of MNIST’s (Mixed Na-
tional Institute of Standards and Technology database) hand-
written digital database. Since our neural network is based on
Google’s TensorFlow, the version is 1.13, and the GELU func-
tion only supports the latest version 2.0. We cannot currently
verify the effect of this activation function in our training. In
future works, we will compare more activation functions.

In order to use the neural network trained with theoret-
ical data to retrieve the experimentally measured TG-FROG
traces, the following issues still need to be addressed. First, it
is related to the central wavelength of the theoretical pulse we
generate. In the forward calculation, we set the wavelength of
the carrier wave at 750 nm, and the actual carrier wave of a real
pulse may not be at this wavelength. Second, when we calcu-
late and generate theoretical traces, we use a Gaussian function
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spectrum, while the actual measured spectrum in experiments
is not a Gaussian function, which affects the structure of the
trace. Third, in the experimental measurement, other nonlinear
effects such as self-phase modulation (SPM) in the nonlinear
crystal also change the characteristics of the trace. Fourth, dif-
ferent CNN parameters and activation functions still need to
be explored for experimental traces.

5. Conclusion and perspectives
In conclusion, we train a CNN to reconstruct the time-

domain envelop and phase of ultrashort laser pulses from TG-
FROG traces. We use a forward program to generate numeri-
cally time domain pulse envelops, phases, and FROG traces of
femtosecond pulses to train CNN under supervised training.
Through the application to similarly generated FROG traces
outside the training set, it is proved that our method based on
CNN is feasible. We compare the prediction results of several
activation functions, and the results show that the appropri-
ate activation function improves the correctness of the neu-
ral network training. In our case, the ELU function performs
better than SELU and LRELU. Finally, we point out several
issues that need to be addressed for neural networks trained
with theoretical data to predict experimental data. Currently

this method has been proved to be able to achieve envelop and
phase retrieval of theoretically calculated FROG traces. In or-
der to retrieve traces measured in experiments, a large number
of experiments and theoretical data close to the experimental
conditions are necessary first. Issues of noise processing and
further optimization of the neural network also need to be ad-
dressed.
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