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Abstract: Yttrium oxide (Y2O3) has been widely used in 
metal-reinforced composites, microelectronics, wave-
guide lasers, and high-temperature protective coatings 
because of its good physical and photoelectric properties. 
However, few studies have been done on the nonlinear 
optical applications of Y2O3 as saturable absorbers (SAs) 
in fiber lasers so far. Here, a passively Q-switched near-
infrared fiber laser using Y2O3 as a Q-switching device is 
demonstrated. The optical nonlinear properties of the Y2O3 
SA prepared by the magnetron sputtering method were 
measured by the twin-detector measurement technique, 
and the modulation depth of the proposed Y2O3 SA was 
found to be 46.43%. The achieved Q-switched laser deliv-
ers an average output power of 26 mW at 1530 nm with a 
pulse duration of 592.7 ns. To the best of our knowledge, 
this is the first report on the optical nonlinearity of Y2O3 as 
a Q-switcher for the near-infrared fiber laser, which may 
deepen the understanding of the optical nonlinear prop-
erties of Y2O3 and make inroads into the potential market 
of optical modulation and optoelectronic devices.

Keywords: nonlinear optical materials; saturable 
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1  �Introduction
Passively Q-switched fiber lasers (QSFL), which are gener-
ated by Q-factor modulation or intracavity loss regulation, 
have attracted much attention because of their intrinsic 
advantages of high energy, alignment-free structure, com-
pactness, and high stability [1–4]. Up to now, QSFLs have 
been widely applied in medicine, industrial material pro-
cessing, fiber-optical sensing, and optical communica-
tion [5–16]; but they can also be used as an ideal platform 
for investigating the dynamic evolution of solitons and 
saturated absorption of nanomaterials [17–33].

In recent years, passively QSFLs based on saturable 
absorbers (SAs) have received much attention. Semicon-
ductor saturable absorber mirrors (SESAMs) are con-
sidered to be the hot topic in commercial applications. 
However, the inevitable features of complex manufac-
turing process, narrow bandwidth, and high cost make 
it hard for them to meet future commercial application 
requirements [34, 35]. Graphene, which has emerged as 
required by time, has been attracting growing attention 
in recent years. The characteristics of ultra-broadband 
absorption and ultrafast electron dynamics make it shine 
brilliantly in the field of optoelectronics [36, 37]. The tre-
mendous success of graphene has also led to the explora-
tion of more potential materials [38–42]. Transition-metal 
dichalcogenides (TMDs) possess unique photoelectric 
properties that vary with thickness. They not only exhibit 
ultra-wideband absorption characteristics due to defective 
states but also have outstanding performance in realizing 
ultrafast lasers [43–45]. Similarly, topological insulators 
(TIs) and black phosphorous (BP) have recently got break-
throughs in applications of photonics and photoelectron-
ics in the near-infrared band [46–49]. In addition, more 
new materials with excellent properties are beginning to 
emerge [50–52].

Yttrium oxide (Y2O3) performs well in terms of hard-
ness, melting point, and chemical stability. Therefore, it is 
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often used in metal-reinforced composites, microelectron-
ics, waveguide lasers, and high-temperature protective 
coatings [53–55]. In microelectronics, Y2O3 is considered 
as a potential gate dielectric material because of its high 
dielectric constant and good compatibility with silicon 
[56]. Moreover, because of the excellent thermo-optical 
properties of Y2O3, it can be easily doped with a variety 
of rare earth ions, thus helping to produce high-power 
waveguide lasers [57, 58]. However, few studies have been 
done on the nonlinear optical applications of Y2O3 as SAs 
in fiber lasers so far.

In order to stimulate the application of Y2O3 in more 
fields, we attempted to explore its optical nonlinear-
ity. Combined with the common magnetron sputtering 
method, the tapered Y2O3 SA was prepared. By coupling 
the Y2O3 SA into the cavity, a QSFL delivering an average 
output power of 26 mW at 1530 nm with a pulse duration 
of 592.7 ns was obtained. Our experiments not only prove 
the optical nonlinearity of Y2O3 but also provide the pos-
sibility for the further development of optical modulation 
and optoelectronic devices.

2  �Preparation and characterization 
of Y2O3 SA

To enhance the nonlinearity and reduce thermal damage 
of the Y2O3 SA, the tapered fiber structure was selected. 
Meanwhile, to ensure convenience and efficiency of pro-
duction, we chose the appropriate production method, 
namely magnetron sputtering deposition (MSD). The clean, 
tapered optical fiber, which was prepared in advance, had 
a waist diameter of 14 μm and effective fused zone length 
of 0.8  cm; the large effective length of the fused zone 
and the small waist diameter of the tapered fiber help in 
enhancing the nonlinearity of the Y2O3 SA. The specific 

production process is as follows: First, the commercially 
purchased Y2O3 target with 99.99% purity was tapered and 
fixed in a vacuum chamber. A vacuum pump was used to 
bring the degree of vacuum to 10 × 10−3 Pa. Then, excited 
and accelerated Ar ions were made to bombard the Y2O3 
target under the action of an electric field. Subsequently, 
the sputtered Y2O3 particles were uniformly deposited on 
the outer wall of the optical fiber. Meanwhile, the fiber 
was rotated evenly at a speed of 10 rpm to make the mate-
rial dense and uniform. The flow rate of Ar was 20 sccm 
(standard cubic centimeter per minute) during the the 
sputtering process. The temperature of the preparation 
process was 200°C.

After the preparation of the Y2O3 SA, some necessary 
characterization and measurements were carried out. 
Atomic force microscopy (AFM) was used to examine the 
surface properties of the prepared Y2O3 SA (Figure 1). By 
detecting the thickness difference between the material 
coverage area and the silicon substrate in Figure 1A, the 
exact thickness of Y2O3 was estimated as 7 nm in Figure 1B. 
According to the definition of two-dimensional (2D) mate-
rials, the Y2O3 used here can be considered as two dimen-
sional [59, 60]. Meanwhile, the surface morphology of Y2O3 
is shown in Figure 1C, which reveals the compactness and 
uniformity of the material surface.

X-ray photoelectron spectroscopy (XPS) is able to 
effectively determine the composition and properties 
of materials. As shown in Figure 2A, the prominent O-Y, 
Y-O-Si, and O-Si peaks are located at 529.8, 531.9, and 
532.9 eV, respectively. The Y-O-Si peak that is observed 
in the film may be the result of diffusion of the substrate 
silicon [61]. As shown in Figure 2B, the prominent Y 3d5/2 
and Y 3d3/2 peaks are located at 157 and 159 eV, respec-
tively. The XPS spectrum of Y2O3 is highly consistent with 
those obtained in previous studies [61, 62]. The agree-
ment in both composition and binding energy proves the 
existence of Y2O3.

Figure 1: The AFM of Y2O3.
(A) Material boundary, (B) thickness, and (C) surface morphology of Y2O3.
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The absorption spectrum of Y2O3 is shown in 
Figure 3A, which indicates that the as-prepared Y2O3 has 
ultrawide absorption characteristics. The absorptivity of 
the fabricated Y2O3 was measured as 38.346% at 1550 nm. 
In the investigation of the optical nonlinearity of Y2O3, the 
twin-detector measurement technique was used. The light 
transmissions of Y2O3 at different powers were recorded 
separately, which are shown in the figure as blue points. 
The pump source during the measurement was operated 
at 1550  nm, and the corresponding pulse duration and 
repetition rate were 700 fs and 120 MHz, respectively. The 
results were fitted by
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The results of curve-fitting in Figure 3B show that 
the Y2O3 SA has a modulation depth (αs) of 46.43%, non-
saturable loss (αns) of 26.75%, and saturable intensity 
(Isat) of 1.58 MW∕cm2. The large modulation depth may 
come from two aspects: the strong nonlinearity of the 
Y2O3 material itself, and the small waist diameter and 
large effective length of the fused zone of the tapered 
fiber. The performance comparison of the Y2O3 SA and 
other nanomaterial-based SAs is shown in Table 1. The 

relatively large modulation depth of the Y2O3 SA is bene-
ficial to the generation of ultrashort pulses. Meanwhile, 
the small saturation intensity of the Y2O3 SA is condu-
cive to a low start threshold of the Q-switched laser. The 
insertion loss (IL) of the Y2O3 SA is 1.4 dB, which is the 
average value.

3  �Experiment
Considering the superiority of the fiber laser in terms of 
alignment-free structure, compactness, and high stabil-
ity, it was chosen as the platform for the nonlinearity 
verification of Y2O3. Figure 4 is the device diagram of a 
commonly used ring-cavity fiber laser. The length of 
the erbium-doped fiber (EDF) used as the gain medium 
is 60 cm, and the total length of the cavity is 2.1 m. The 
source in the cavity is a commercial laser pump operat-
ing at 980 nm. As an important device for coupling the 
light source into the cavity, the wavelength division mul-
tiplexer (WDM, 980/1550nm) can combine optical signals 
of different wavelengths into one bundle. The isolator 
(ISO) ensures the unidirectional transmission of light, 
thereby guaranteeing the normal operation of the laser 
and avoiding unnecessary device damage. The intracavity 
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Figure 2: The XPS of Y2O3 film.
(A) O 1s spectra of Y2O3 films. (B) Y 3d spectra of Y2O3 films.

1000 0.01

30

40

50

60

70

80BA

0.1 1 10 100

46.43%

Fitting curveExperiment data

Isat = 1.58 MW/cm2

αs = 46.43%

αns = 26.75%

T
ra

ns
m

is
si

on
 (

%
)

0.2

0.3

0.4

A
bs

or
pt

iv
ity

0.5

1500 2000

Wavelength (nm) Intensity (MW/cm2)

2500

38.346%@1550 nm

Figure 3: Linear and nonlinear absorption characterization of Y2O3.
(A) Absorption spectrum of Y2O3 films. (B) Nonlinear absorption characteristics of the Y2O3 SA.
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birefringence and polarization state are adjusted by a 
polarization controller (PC), thus optimizing the operat-
ing state for a stable pulse output. With an 80:20 optical 
coupler (OC), 20% of the intracavity signals are exported 
for real-time monitoring. The Y2O3 SA is placed between 
the WDM and ISO. Optical devices such as an oscillo-
scope (Tektronix DPO 3054) and an optical spectrum ana-
lyzer (Yokogawa AQ 6370C) outside the cavity are used 
to monitor and measure the real-time dynamics in the 
cavity.

4  �Results and discussion
After inserting the Y2O3 SA into the cavity, stable 
Q-switched pulses appeared at the pump power of 
148 mW. The pulse sequences at different pump powers 
are shown in Figure 5A. In Figure 5B, the spectrum of the 
realized Q-switched operation has a central wavelength 
of 1530 nm with a bandwidth of 1.5 nm. It is worth men-
tioning that there is no significant change in the spectral 
shape recorded at different time intervals. Meanwhile, 
there is no remaining pump power from the output. The 
monopulse envelope of the output pulse at 630  mW is 
shown in Figure 5C, whose typical symmetrical Gaussian 
shape shows a pulse duration of 592.7 ns. The radio fre-
quency (RF) spectrum measured is shown in Figure 5D. 

At the resolution bandwidth of 10  Hz, the Q-switched 
system exhibits a signal-to-noise ratio (SNR) of 65 dB. 
Meanwhile, the frequency-doubled signal decreased 
evenly over a wide range of frequencies, which further 
proved the stability of the system.

With the increase of input power, the repetition 
rate of output pulse increases almost uniformly in the 
range 112–217 kHz, as shown in Figure 6A. The pulse 
duration decreases rapidly in the initial stage of power 
growth and tends to be stable in the later stage, which 
is related to the pump-induced gain compression effect 
as confirmed in Ref. [68]. The stability of the later pulse 
duration indicates that the absorber tends toward satu-
ration. The adjustable range of pulse duration is 2259–
592.7 ns when input power changes from 148 to 630 mW. 
The repetition rate of the Q-switched pulse increases 
with the increase of the pump power as reported in Ref. 
[69]. From Figure 6B, for a pump power of 630 mW, the 
average output power and pulse energy are 26 mW and 
120 nJ, respectively. It is worth mentioning that at the 
maximum pump power, the growth trend of the average 
output power is still upward, which indicates that the 
stable working condition can be maintained even at high 
power. The maximum damage threshold of the Y2O3 SA 
is ~68 mJ/cm2. In the experiment, mode-locking was not 
obtained because the nonlinearity and anomalous dis-
persion did not reach equilibrium in this case. Attempts 
to apply the Y2O3 SA in mode-locked lasers will continue 
in future work.

The comparison between the proposed QSFL and 
previous lasers is shown in Table 2. The pulse duration 
of 592.7 ns is proved to be competitive among SA-based 
QSFLs. Moreover, the high melting point and good chemi-
cal stability of the Y2O3 enable the Q-switched oscillator 
in maintaining stable, high power. Therefore, the Y2O3 
SA may make inroads into the potential market of optical 
modulation and optoelectronic devices.

Table 1: Nonlinear behavior of some SAs.

Materials   Modulation 
depth (%)

  Saturation 
intensity (MW/cm2)

  Unsaturated 
loss (%)

  IL (dB)  Refs.

Graphene   1.5  –  –  0.5  [63]
BP   18.55  10.74  ~46  2.7  [64]
Bi2Te3   22  57  21  1  [65]
WS2   4.85  3.83  3.65  0.2  [66]
MoS2   2  ~10  48.5  2.9  [67]
Y2O3   46.43  1.58  26.75  1.4  This work

IL, insertion loss.
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Figure 4: Experimental installation diagram of the proposed fiber 
laser.
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Figure 5: Performance of QSFL based on Y2O3 SA.
(A) Pulse sequence at different pump powers. (B) Spectra for different time periods. (C) Pulse duration of 592.7 ns. (D) RF spectrum.
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Figure 6: Characteristics of proposed QSFL variation under different power.
(A) Pulse duration and repetition rate as functions of input power. (B) Average output power and pulse energy as functions of input power.

Table 2: Performance comparison of SA-based QSFLs.

Materials ∆ λ/λ (nm) Freqency (kHz) τ (μs) P (mW) Energy (nJ) SNR (dB) Refs.

Graphene 0.02/1539.6 10.36–41.8 3.89 <1.2 28.7 30 [63]
BP 0.2/1562.87 6.983–15.78 13.2 ~1.5 94.3 45 [64]
Bi2Se3 0.45/1566.9 2.154–12.82 16.3 20 1525 36.4 [65]
WS2 –/1558 79–97 1.3 16.4 179.6 44 [66]
MoS2 –/1551.2 8.77–43.47 3.3 5.91 160 50 [67]
Y2O3 1.5/1530 112–217 0.5927 26 120 65 This work
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5  �Conclusion

An erbium-doped QSFL using Y2O3 as the Q-switched 
device to deliver nanosecond pulses has been demon-
strated in this article. The generated stable Q-switched 
pulses have a controlled repetition rate of 112–217 kHz, 
pulse duration of 593 ns, output power of 26  mW, and 
pulse energy of 120 nJ. The pulse duration of 593 ns is 
comparable with that of other SA-based QSFLs. More-
over, the high melting point and good chemical stability 
Y2O3 result in improved stability of the laser even at high 
power. Our experiments have shown that the Y2O3 SA not 
only has strong nonlinearity and advantages in achieving 
ultrashort pulse duration but also has worked steadily in 
high-power operation. Therefore, the Y2O3 SA may make 
inroads into the potential market of optical modulation 
and optoelectronic devices.
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