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Abstract: In recent years, the diversity of transition metal 
dichalcogenides (TMDs) has made them occupy the essen-
tial status in the exploration of saturable absorbing mate-
rials. WTe2, also an important member of TMDs not only 
exhibits narrower band gap than MoS2 or WS2, but also has 
fast relaxation time, thus it has advantages in the realiza-
tion of broadband absorption and ultrashort pulses. In this 
work, a WTe2 saturable absorber (SA) fabricated by magne-
tron sputtering technology features nonlinear absorption 
coefficient of −3.78 × 10−5 cm/W and modulation depth of 
37.95%. After integrating this WTe2 SA into the ring cavity, 
a 164 fs mode-locked laser is achieved at 1557.71 nm. The 
laser remains stable about 8  h with an output power of 
36.7 mW. The results show the favorable saturable absorp-
tion properties of WTe2, and further demonstrate the 
potential of WTe2 in the realization of ultrashort pulses, 
which indicates that WTe2 can be regarded as a possible 
candidate for future ultrafast lasers.

Keywords: two-dimensional nanomaterials; saturable 
absorbers; mode-locked laser; fiber lasers.

1  �Introduction
Ultrafast fiber lasers have attracted considerable attention 
in medical treatment, material processing, femtosecond 
time spectroscopy, nano-scale imaging and communi-
cation due to high pulse energy, low thermal effect and 
outstanding spatial/temporal resolution [1]. In particular, 
passive mode-locking method, which employs SAs as key 
mode-lockers has been recognized as an economical and 
efficient method to implement femtosecond pulses [2–4]. 
Therefore, the explorations of some SAs with excellent 
performance may become the point of penetration in the 
development and innovation of ultrafast lasers.

So far, in addition to semiconductor saturable 
absorber mirror (SESAM) which has been commercial-
ized, two-dimensional (2D) nanomaterials have become 
candidates for the next generation of SAs, because of 
their unique electronic and optical properties [5–8]. With 
the deepening of research, the types of SA materials con-
tinue to expand, such as graphene, topological insulators, 
black phosphorus, TMDs, etc. [9–32]. As the representa-
tive materials of TMDs, molybdenum disulfide (MoS2), and 
tungsten disulfide (WS2) have made impressive achieve-
ments in laser as SAs. It has been reported that the third-
order nonlinear susceptibility of MoS2 is higher than that 
of graphene at 800 nm [33]. Moreover, both mode-locked 
or Q-switched lasers based on MoS2 and WS2 have been 
realized in the wide band of 1–2 μm. Undoubtedly, the 
diversity of TMDs makes them occupy the essential status 
in the exploration of SA materials.

Tungsten ditelluride (WTe2), is also an important 
member of TMDs, inherits the thickness-dependent band 
gap structure of TMDs. The band gap of bulk and mon-
olayer WTe2 are 0.7 and 1.18 eV, which is lower than that 
of commonly used MoS2 or WS2. This small band gap pre-
dicts high electron mobility and facilitates the applica-
tion of broadband absorption [34]. In addition, the fast 
relaxation process of WTe2 occurs within 1 ps as demon-
strated in Ref. [35]. SAs with fast response timesare less 
affected by amplified spontaneous emission [36]. More-
over, the fast relaxation time of WTe2 makes it suitable for 
the generation of ultrashort pulses. Although Q-switched 
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laser based on WTe2 has been realized in the previous 
work [13], the advantages of femtosecond mode-locked 
laser in small thermal effect, high temporal and spatial 
resolution inspire us to further explore the application 
potential of WTe2 in mode-locked lasers.

In this work, an erbium-doped fiber laser (EDFL) based 
on WTe2 is demonstrated. The WTe2 is fabricated by the 
magnetron-sputtering technology (MST). WTe2 SA adopts 
the structure of microfibre, which strengthens the inter-
action between light and materials, and avoids the direct 
photoablation damage of materials. The prepared WTe2 SA 
shows nonlinear absorption coefficient of −3.78 × 10−5 cm/W 
and modulation depth of 37.95%. After the WTe2 SA is inte-
grated into the ring cavity, a sub-170 fs mode-locked laser 
is achieved at 1557.71 nm. High signal-to-noise ratio (SNR) 
and small standard deviation of output power indicate the 
stability of EDFL. Our research highlights the potential of 
WTe2 in the realization of ultrafast pulses and paves the way 
for its further application in the field of ultrafast photonics.

2  �Preparation and characterization 
of WTe2 SA

In the preparation process, WTe2 is coated on microfiber to 
form WTe2 SA. The microfiber used is uniformly stretched 
from single-mode fiber (SMF 28e), its waist diameter and 
effective interaction length are 15 μm and 1  cm. Consid-
ering the difficulty of adhesion in the fragile microfiber, 
MST is suitable for the preparation, which not only has 
a high film formation rate, but also prepares films with 
great uniformity and large scale. The detailed preparation 
process is as follows. First, the microfiber and WTe2 target 
with the purity of 99.99% are fixed in a vacuum chamber, 
the vacuum degree of that chamber is 9 × 10−4 Pa. Then, 
argon ion ionized at high pressure bombards the target 
surface. Because of the high energy of sputtered target 
atoms, the diffusion ability of atoms during deposition 
is strong, which leads to the compactness of the depos-
ited structure and the strong adhesion between the film 
and the substrate. Meanwhile, the microfiber rotates at a 
constant speed of 20 r/min to guarantee the uniformity of 
coating.

The nanoscale observation of surface morphology of 
prepared WTe2 is realized by scanning electron microscope 
(SEM). As shown in Figure 1A and B, WTe2 particles are 
compact and uniformly arranged. The thickness of WTe2 
film is 100  nm as shown in Figure 1C. Furthermore, the 
linear transmission of the WTe2 is shown in Figure 1D, the 
transmittance near 1550 nm is about 61.6%. We found that 

WTe2 shows absorption in a wide wavelength range from 
1100 to 1800  nm. Therefore, the corresponding relation-
ship between band gap and summation of phonon energy 
can be given by the Tauc plot [37, 38]. From Figure 1E, the 
band gap of the prepared WTe2 is about 0.2 eV, it is prob-
ably due to the phase type of the WTe2. According to Ref. 
[34], bulk WTe2 in the Td (or 1T) structure has a 0.21 eV 
band by using the density functional theory (DFT). From 
the Raman spectrum of WTe2 mentioned in the previous 
work [13], the vibration modes of WTe2 here is consistent 
with that of Td-WTe2 [39], which indicates that the phase 
of WTe2 in our experiment is Td. Thus, the band gap of 
0.2 eV is attributed to the Td phase of the bulk WTe2. The 
nonlinear absorption properties of WTe2 film is investi-
gated by an open-aperture (OA) Z-scan measurement. A 
100-fs Ti: sapphire amplifier at 800 nm with a repetition 
rate of 1 kHz pumps the measurement system. The excita-
tion power of the mentioned driving laser is 0.4 mW. The 
traditional OA Z-scan data and fitting trace are shown in 
Figure 1F. The nonlinear absorption coefficient (β) of WTe2 
is −3.78 × 10−5 cm/W. The power-dependent nonlinear 
absorption of WTe2 is exhibited by balanced twin-detector 
measurement. The light source is a 600 fs home-made 
nonlinear polarization evolution mode-locked laser with 
a repetition rate of 120  MHz at 1550  nm. Typical power-
dependent nonlinear absorption trends and fitting curve 
are indicated in Figure  1F. The modulation depth (αs) of 
WTe2 SA is up to 37.95%, other details of saturation inten-
sity (Isat) and non-saturable loss (αns) are listed in Figure 1G. 
The modulation depth is slightly improved compared with 
the previous work [13], which is related to the increase in 
the relaxation time and the enhancement of light-matter 
interaction caused by the increase in thickness [40–43]. 
The nonlinear behavior of WTe2 and some commonly 
used SAs are listed in Table 1. From Table 1, Sb2Te3 has the 
strongest nonlinearity. In addition, the nonlinear absorp-
tion of MoTe2 and WTe2 are remarkable, while the modu-
lation depth of WTe2 is slightly better than that of MoTe2.

3  �Experiment
The experimental device diagram of the WTe2-based EDFL 
is shown in Figure 2, including a laser diode (LD), a wave-
length division multiplexer (WDM), a section of erbium-
doped fiber (EDF), an optical coupler (OC), a polarization 
controller (PC), and an isolator (ISO). The LD pumps the 
whole system through a 980/1550 nm WDM. As the gain 
fiber, EDF amplifies the pulse. PC generates stress bire-
fringence through the mechanical extrusion of the fiber 
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cross section. The ISO is used for guaranteeing orderly 
unidirectional laser transmission. A small portion of the 
light is exported by a 20:80 OC for real-time observation 

and data recording. The length of the whole ring cavity is 
2.98 m, which contains the EDF of 0.58 m and single-mode 
fiber of 2.25 m.
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Figure 1: Characterization and nonlinear characteristics of WTe2.
(A) SEM image of WTe2-coated microfiber, (B) surface morphology, (C) vertical thickness, (D) linear absorption spectra, (E) Tauc plot,  
(F) OA Z-scan, (G) power-dependent absorption of WTe2.
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4  �Results and discussion
Although experimental devices similar to previous work 
are adopted [13], an additional 50  cm single-mode fiber 
was added, and another SA showing different nonlinear-
ity was used. When the pump power reaches the mode-
locked threshold of 244  mW, self-starting mode-locking 
is observed after fine-tuning the PC. And when it slowly 
increases to 630  mW, the main operating parameters of 
achieved laser are measured by the light exported through 
OC. The obtained mode-locked pulses are uniform and 
own a fixed time interval of 14 ns as shown in Figure 3A. 
The autocorrelation trace of the single pulse fitted by sech2 
profile is shown in Figure 3B, the pulse duration is 164 fs. 
The coefficient 1.54 is the conversion coefficient of pulse 
duration indicated in autocorrelation curve and actual 
pulse duration. Subsequently, long-term spectral sam-
plings are presented in Figure 3C, informing the mode-
locked system works at 1557.71 nm with a 3 dB bandwidth 
of 31.42 nm. The time-bandwidth product (TBP) is 0.6366. 
As shown in Figure 3D, the fundamental frequency at 
71.3 MHz owns the SNR up to 75 dB with a resolution of 
1 Hz. The illustrations show the distribution of frequency 
multiplications over a range of 800 MHz.

980 nm LD EDF

WDM
(980/1550 nm)

Output

OC

SA

PC
ISO

WTe2 SA

Figure 2: Experimental device diagram of the WTe2-based EDFL.

Table 1: The nonlinear behavior of some SAs.

Materials   Modulation 
depth

  Saturation 
intensity 

(MW/cm2)

  |β (cm/W)|   Refs.

Graphene   5.1%   74   10−7  [44]
BP   7.57%   9870   2.5 × 10−7  [45]
Sb2Te3   38%   3.3   9.0 × 104  [46]
MoTe2   5.7%   8.3   7.4 × 10−4  [47]
WTe2   37.95%   0.1374   3.78 × 10−5  This work
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Figure 3: The operating parameters of achieved laser.
(A) Oscilloscope signals; (B) Pulse duration; (C) Spectrum; (D) Radio frequency (RF) spectrum.
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The law of output power increasing with pump power 
is shown in Figure 4A, the slope of each point is approxi-
mately the same. The maximum output power is 36.7 mW. 
In the laboratory environment, we monitored its output 
power stability for about 8  h, and the output power of 
the laser is recorded once a second. The data of nearly 
30,000 points are almost distributed in a straight line 
in Figure 4B, and the standard deviation of the samples 
is 0.56 mW. From the perspective of high SNR and small 
standard deviation, the system is relatively stable.

Further, comparisons of mode-locked lasers based on 
some SAs have also been launched in Table 2. The results 
in Table 2 are all based on the MST method and the struc-
ture of the tapered fiber. After eliminating the interference 
of preparation method and the structure of SA, we found 
that the pulse duration of WTe2-based laser is relatively 
short. The results highlight the potential of WTe2 in the 
realization of ultrafast pulses.

5  �Conclusion
In conclusion, the ultrafast EDFL based on the WTe2 SA 
has been implemented. The proposed WTe2 SA has been 
prepared by coating WTe2 on microfiber with MST. This 
WTe2 SA has shown impressive optical nonlinearity with 
nonlinear absorption coefficient of −3.78 × 10−5 cm/W 

and modulation depth of 37.95%. After integrating it into 
the ring cavity, a sub-170 fs mode-locked laser has been 
achieved at 1557.71 nm. The laser has the maximum output 
power of 36.7 mW and SNR of 75 dB, and the stability of 
the output power has been maintained during the moni-
toring for nearly 8  h. In addition, after eliminating the 
interference of preparation method and SA structure, the 
proposed WTe2-based laser is not inferior, especially in 
the realization of ultrashort pulses. Our work shows the 
potential of WTe2 in ultrafast photonics, and opens a pos-
sible way to achieve high-performance laser with high 
power and ultrafast pulse.
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Figure 4: Output power and stability of laser.
(A) The law of output power increasing with pump power; (B) Long time output power monitoring.

Table 2: Comparisons of mode-locked lasers based on some SAs.

Materials   Preparation   SA structure   τ (fs)   λ/∆λ(nm)   SNR(dB)   Output 
power (mW)

  Refs.

WS2   MST   Tapered fiber   288   1560/19   58   18.4  [48]
MoS2   MST   Tapered fiber   256   1563.4/13.6   75   68.3  [49]
MoTe2   MST   Tapered fiber   229   1559.6/11.8   93   –  [50]
WTe2   MST   Tapered fiber   164   1557.7/31.4   75   36.7  This work
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