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Abstract: IV–VI semiconductors have attracted widespread 
attention in basic research and practical applications, 
because of their electrical and optoelectronic properties 
comparable to graphene. Herein, an optical modulator 
based on SnSSe with strong nonlinearity is prepared by 
chemical vapor transfer method. The modulation depth 
of proposed SnSSe saturable absorber (SA) is up to 57.5%. 
By incorporating SnSSe SA into the laser, the Q-switched 
pulses as short as 547.8 ns are achieved at 1530.07 nm. As 
far as we know, this is the first successful application of 
SnSSe in Q-switched lasers. Our investigation not only 
prove the optical nonlinearity of SnSSe, but also reveal 
the potential of SnSSe SA in ultrafast photonics.

Keywords: two-dimensional nanomaterials; saturable 
absorbers; mode-locked laser; fiber lasers.

1  �Introduction
In the past few years, Q-switched fiber lasers (QSFL) have 
made a great progress in practical applications such as 

optical sensing, material processing, communication, 
and defense due to their unique advantages in high pulse 
energy, high cost performance, and compact structure 
[1–5]. Saturable absorber (SA) is recognized as the key 
device in passively QSFL, both the structure and catego-
ries of which have a crucial impact on the performance of 
lasers. Since the elimination of dyes, semiconductor satu-
rable absorber mirror (SESAM) as a substitute has domi-
nated the commercial market of SA for more than 20 years 
[6], the relaxation time, modulation depth, and operat-
ing wavelength of which can be accurately engineered. 
However, the drawbacks such as narrow operating band-
width, high cost, complex manufacturing processes and 
low damage thresholds are gradually emerging in the 
applications and hinder its further development [7–9].

In recent years, some potential saturable materials 
with excellent properties have emerged as the times 
require. The excellent properties of ultrafast relaxation 
time, high damage threshold and broadband absorp-
tion capacity of graphene make it shine in the applica-
tions [10–13]. In addition to graphene which has set off a 
research boom, other materials, such as transition metal 
dichalcogenides (TMDs), black phosphorus (BPs), and 
topological insulators [14–27], are gradually coming into 
view. In recent years, TMDs have been the focus of atten-
tion, because of the diversity of materials [25–27]. On the 
one hand, their classical layered structure facilitates the 
stripping of bulk one into few layers for high-performance 
optoelectronic devices. On the other hand, the band gap 
structure of TMDs, which has obvious changes in gap value 
and indirect-to-direct transition as the thickness decreases, 
results in some unique properties such as high third-order 
nonlinear and ultrafast relaxation systems. As the repre-
sentative of TMDs, molybdenum disulfide (MoS2) has been  
widely concerned in optical nonlinearity [28–30]. It has 
been reported that the MoS2 nanosheet exhibits a remark-
able saturated absorption at 800 nm, which is better than 
that of graphene [31, 32]. Moreover, the broadband absorp-
tion characteristics of MoS2 have been confirmed from the 
successful implement of QSFL from 1.06 to 2.1 μm [33].

As a TMD analogue, IV–VI semiconductors have 
become one of the choices due to their excellent 
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characteristics. Because of the influence of the incorpora-
tion of sulfur in tin selenium (SnSe) on bandgap tailoring, 
this ternary compound SnSSe has recently attracted much 
interest in optoelectronic devices, and has been found to 
have some advantages in applications. Firstly, the raw 
materials of SnSSe are abundant and environmentally 
friendly, which is conducive to large-scale application and 
commercial production in the future. Secondly, accord-
ing to the previous research, the interlayer spacing of 
SnSSe is increased by 2.84% compared with that of SnS2, 
which is helpful for the stripping of lamellar materials 
[34]. In addition, SnSSe grows preferentially along (001) 
crystal surface, which may be liable for the excellent elec-
trochemical performances. SnSSe has been reported to 
deliver the highest capacities during the long-term cycling 
processes compared with other non-composite electrode 
materials (for example, MoS2, SnS2, SWCNT, and etc) [34]. 
The bandgap energy of 1.08 eV endows the unique advan-
tages in thermoelectric converters and solar cells [35, 36].

In this paper, a stable passively QSFL based on the 
SnSSe SA is achieved for the first time. The SnSSe SA 
is manufactured by the chemical vapor transfer (CVT) 
method and features the large modulation depth up to 
57.5%. The repetition rate adjustable from 116.4 to 261.1 
kHz, the pulse duration as short as 547.8 ns, the signal-to-
noise ratio (SNR) up to 55 dB and pulse energy of 42.79 nJ 
further confirm the impressive performance of the SnSSe 
SA in realizing QSFL. Results indicate that the SnSSe SA 
can be used as a potential nonlinear photonic device.

2  �Preparation and characterization
The SnSSe was prepared by the CVT method which has 
been extensively used in the production of 2D materials 
with high quality. As previous researches have thoroughly 
introduced the technological process of CVT [37], we will 
not go into too much detail here. The prepared SnSSe 
nanosheets were transferred to the core region of fiber 
end face with the assistance of polymethyl methacrylate 
(PMMA) transfer technology. Subsequently, the organic 
PMMA was removed with acetone as a solvent. So far, the 
preparation of the SnSSe SA used in this work has been 
completed.

The surface morphology and thickness of the 
nanosheets were detected by atomic force microscopy 
(AFM). The resulting nanosheets are uniform as shown in 
Figure 1A. From the height difference reflected in Figure 
1B, the thickness of SnSSe is about 115  nm. The Raman 
shift is shown in Figure 1C. The peaks Eg and A1g of SnSSe 

are located at 137 cm−1, 205 cm−1 and 304 cm−1, respectively 
[38–40]. The peak around 525  cm−1 shows silicon from 
the substrate [41]. The absorption spectrum of SnSSe is 
shown in Figure 1D. The X-ray photoelectron spectro-
scopy (XPS) is considered to be an effective method in the 
determination of elemental composition. The broadband 
XPS spectrum of SnSSe is shown in Figure 1E. In Figure 
1F, the obvious peaks at 54.6 and 53.8 eV are from Se 
3d3/2 and Se 3d5/2, which demonstrates the divalent sele-
nium exists. Sn 3d spectrum is shown in Figure 1G, two 
separate peaks located at 495 and 486.6 eV are observed, 
which are characteristic peaks of Sn 3d3/2 and Sn 3d5/2. The 
distance difference between the two peaks is about 8.4, 
which demonstrates the existence of Sn. The character-
istic peaks of Se 3p3/2, S 2p and Se 3p1/2 at 161.6 eV, 163 eV 
and 166.5 eV are observed in Figure 1H, which indicates 
that S and Se coexist in the sample. In summary, XPS 
shows the successful preparation of SnSSe.

By using the balanced twin detector method, the 
nonlinear absorption characteristics of the SnSSe SA is 
shown in Figure 1I. The modulation depth of the SnSSe SA is 
57.5%, the saturable absorption intensity is 0.065 MW/cm2, 
and the non-saturated loss is 25.5%. The insertion loss of 
the SnSSe SA is 1.3 dB. As shown in Table 1, compared with 
other saturable absorbing materials, SnSSe has a promi-
nent advantage in large modulation depth.

3  �Experiment
Passively QSFL is recognized as an important platform for 
testing the nonlinearity of SA. The SnSSe-SA is embedded 
in the erbium-doped fiber (EDF) laser in Figure 2. Wave-
length division multiplexer (WDM) incorporates pump 
light centered at 980  nm into the annular cavity. The 
length of SMF-28 and EDF is 215  cm and 40  cm, respec-
tively. An optical coupler (OC) with the 20% output ratio 
is placed after WDM, which is used to monitor the real-
time state of output pulses. The polarization state of the 
light in the cavity and the working state of the system are 
optimized by fine tuning polarization controller (PC). An 
isolator (ISO) is added to the fiber laser to guarantee the 
unidirectional transmission of light.

4  �Results and discussion
When the pump power reaches 136.9mW, the Q-switched 
pulse train is observed on the oscilloscope. Figure 3 shows 
the various performance of QSFL when the pump power 
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Figure 1: The characterization of SnSSe.
(A) AFM image, (B) Thickness, (C) Raman spectra, (D) Absorption spectrum, (E) Broadband XPS spectrum, (F) XPS spectrum of Se, (G) XPS 
spectrum of Sn, (H) XPS spectrum of Se-Sn, (I) Nonlinear absorption of SnSSe SA.

Table 1: Nonlinear performance comparison of different SA

Materials Modulation depth (%) Saturable absorption intensity (MW/cm2) Non-saturation loss Ref.

SCNT 0.94 – – [42]
MoS2 2 10 1% [43]
MoSe2 6.73 132.5 39.2% [30]
WS2 2 27.2 – [44]
WSe2 3.5 103.9 75.1% [22]
BP 8.3 7.9 – [45]
SnS2 4.6 125 – [46]
SnSe2 6.38 – – [47]
CH3NH3PbI3 5.7 4380 – [48]
Se 2.13 – – [49]
SnS 12.5 83500 37.1% [50]
SnSSe 57.5 0.065 25.5% This work
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reaches 630 mW. The optical spectrum in Figure 3A indi-
cates that the laser is centered at 1530.07 nm, and the 3 dB 
spectral width is 2.757  nm. Moreover, the shape of the 
spectrum remains basically the same in ongoing moni-
toring, which proves that the working state of the QSFL 
is stable. Figure 3B demonstrates the different states of 
QSFL on the oscilloscope at different pump powers. The 
repetition rate of the Q-switched pulse is reduced from 
261.1 kHz to 159.2 kHz with the reduction of pump power 
from 630 mW to 244.2 mW. The pulse duration as short as 
547.8 ns is obtained when the pump power is increased to 

the maximum of 630 mW in Figure 3C. In Figure 3D, the 
fundamental frequency of QSFL located at 271.13 kHz, the 
SNR is as high as 55 dB (RBW is 10 Hz, and the measure-
ment span is 800 kHz), which proves the stability of this 
QSFL.

In Figure 4A, the repetition rate of the Q-switched 
pulse increases almost linearly with the increase of pump 
power from 148  mW to 630  mW. In the primary stage of 
pump power growth, the pulse duration changes greatly. 
After that, the change of the pulse duration gradually sta-
bilizes. From Figure 4B, the pulse energy of QSFL changes 
from 14.51 nJ to 42.79 nJ with the increase of pump power. 
The maximum output power is 11.14  mW. The damage 
threshold of the SnSSe SA is about 67.45 mJ/cm2.

Table 2 demonstrates the performances of QSFLs 
using different 2D materials as SAs. From Table 2, the pulse 
duration of enumerated QSFLs are mostly in the μs-level, 
while that of the pulses obtained in our experiment are ns-
level, which indicates that SnSSe-based QSFL has great 
potential in the achievement of ultrafast laser. As reported 
in Ref. [54], a high modulation depth is helpful to generate 
the relatively stable Q-switched pulses. From Table 2, we 
can see that the laser based on SnSSe with large modula-
tion depth does show the maximum SNR of 55 dB, which 
indicates the remarkable stability of our Q-switched laser. 
The reason why the mode locking phenomenon is not 
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Figure 2: Schematic diagram of QSFL based on SnSSe.
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Figure 3: The performance of QSFL.
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observed here may be that the nonlinearity and dispersion 
are not balanced in this case.

5  �Conclusion
In summary, a QSFL based on the SnSSe SA has been 
successfully achieved. The SnSSe SA which is prepared 
by CVT method has owned a large modulation depth of 
57.5%. With the change of pump power, the repetition rate 
of passively QSFL can be adjusted in the range of 116.4 
kHz–261.1 kHz. The SNR up to 55  dB has indicated the 
stability of the system. The maximum output power and 
pulse energy are 11.14  mW and 42.79 nJ. The minimum 
pulse duration of 547.8 ns has been proved to be almost 
at the optimal level. Therefore, as a promising material, 
SnSSe with strong nonlinearity may be a strong candi-
date for high performance optoelectronic devices, which 
also provides a new direction and opportunity for the 
development of next-generation materials-based devices.
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