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Abstract: Due to the unique properties of two-dimensional
(2D) materials, much attention has been paid to the explo-
ration and application of 2D materials. In this review, we
focuson theapplicationof 2Dmaterials inmode-locked fiber
lasers. We summarize the synthesis methods for 2D mate-
rials, fiber integration with 2D materials and 2D materials
based saturable absorbers. We discuss the performance of
the diversemode-locked fiber lasers in the typical operating
wavelength such as 1, 1.5, 2 and 3 μm. Finally, a summary
and outlook of the further applications of the newmaterials
in mode-locked fiber lasers are presented.

Keywords: fiber laser; mode-locked; saturable absorber;
two-dimensional materials.

1 Introduction

Ultrafast lasers have attracted increasingly attention in
the laser science and technology fields such as precision

machining [1–3] and biomedical treatment [4, 5], owing to
their high peak power and ultrashort pulses. Meanwhile,
the nanotechnology and materials also have been
developed widely, due to the continuous progress of ul-
trafast lasers. Nanotechnology is a powerful tool to
investigate and fabricate many emerging materials such
as zero-dimensional quantum dots, one-dimensional
nanowires, 2D single-atom and three-dimensional
nanoballs materials. Physicochemical properties of the
materials depend on their structures. Due to the unique
properties [6–9], 2D materials have been widely studied
and anticipated to have more influence on a diversity of
applications. Up to now, the 2D materials family have
carbon material [10–12], graphene [13–16], transition
metal dichalcogenides (TMD) [17–19], topological in-
sulators (TIs) [20–23], black phosphorus (BP) [24–28],
MXenes, etc. [29–32]. In recent several decades, the above
2D materials have been utilized as the nonlinear mate-
rials to generate Q-switched and mode-locked lasers. The
fiber lasers have many advantages over the other lasers
especially the all solid-state lasers due to their compact,
high efficiency, robust, free maintenance and low cost
[33–36]. Figure 1 shows (a) the evolution of optical sys-
tems and (b) evolution of nonlinear optical devices,
whose sizes are both reduced dramatically frommeters to
millimeters and even nanometers. There are plenty of
researches on new 2D materials for the generation of
mode-locked fiber lasers [37–45], sensors [46], optical
switchers and modulators [47–50], optoelectrical devices
[51–55] and biomedicine [56–60]. In this work, we review
the emerging low dimensional materials and their
application of the nonlinear optical properties in the
mode-locked fiber lasers. The synthesis methods for 2D
materials, fiber integration with 2D materials, especially
2D materials based saturable absorbers (SAs) are sum-
marized. In addition, we discuss and compare the per-
formances of diverse mode-locked fiber lasers in typical
operating wavelength such as 1, 1.5, 2 μm and beyond
2 μm. In summary, the outlook and suggestions about the
applications of the new materials in mode-locked fiber
lasers are given.
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2 Structures and properties of 2D
materials

Unlike in bulk materials, the electrons in 2D materials can
only move freely in two dimensions, resulting in excellent
characteristics such as electron transmission performance,
optical and thermal properties. In 2014, Novoselov et al. first
exfoliated high-quality single-atom-thick graphene from
graphite [61]. After that, a number of novel 2D materials,
such as BP, TMD, TIs, MXenes and single-walled carbon
nanotube (SWCNT) [62], have been continuously explored.
These 2D materials exhibit excellent optical and electrical
properties, due to the controlled atomic layer thickness and
band gap structure. Therefore, in this section, we focus on
the structures and properties of 2D materials.

2.1 Graphene

As we all known, graphene is a single-atom-thick graphite,
in which sp2 hybridized carbon atoms form a planar
hexatomic ring structure. The spacing between two adja-
cent carbon atoms is about 1.42Å [64]. The absorption
capability of the almost completely transparent graphene
is about 2.3% of the incident light in the infrared visible
spectrum [65]. Graphene has excellent optoelectronic and
optical properties, such as superior thermal conductivity
and high charge carrier mobility. In addition, graphene
exhibits good nonlinear optical properties, such as satu-
rable absorption [66], Kerr effect [67], multi-wave mixing
[68] and so on. Graphene, a typical semiconductor
with a zero-bandgap structure, shows obvious saturable
absorption properties when irradiated by high-intensity
light. However, the lowmodulation depth of graphene due
to weak absorption characteristics limits its applications in

specific wavelength and makes it difficult to achieve ul-
trashort pulses. Although a higher modulation depth can
be obtained by increasing the number of graphene layers, it
also increases additional non-saturation loss.

2.2 TMD

TMD are another kind of novel 2D materials with the
chemical formula of MX2, where typically M represents
transition metal atom (Mo, W, Re, Ni, Nb, etc.) and X is a
chalcogen element (S, Se or Te). Monolayer MX2 consists of
one M layer sandwiched by two X layers. The atoms in the
plane are linked by chemical bonds, while the layers are
stacked on each other through weak van der Waals forces
[69] as depicted in Figure 2 (a). Figure 2(b) and (c) show the
atomic force microscope (AFM) image and Raman spec-
trum of monolayer MoS2, respectively [70]. In general, the
TMD band structure can be gradually transformed from
indirect to direct bandgap (1–2 eV), as the layer thickness
decreases from multilayers to a single monolayer [71]. It is
this unique structure that lead to a wide range of optical,
electrical and thermal properties of TMD [72, 73], which are
used in transistors, gas sensing, photocatalytic, photo-
detecting and other fileds [74–77].

2.3 BP

Similar to graphene, a BP monolayer is consisting of a
puckered honeycomb structure, in which a single phos-
phorus atom is connected to three adjacent phosphorus
atoms througha covalentbond, and the individualmolecule
layers interact throughweak van derWaals forces (shown in
Figure 1(d)). Figure 2(e) and (f) give the high resolution
transmission electron microscopy (HR-TEM) image and

Figure 1: (a) Evolution of optical systems and (b) nonlinear optical devices. Reprinted from ref. [63].
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layer-dependent Raman spectra of BP [78]. BP has a tunable
direct bandgap from 0.3 eV (bulk structure) to 1.5 eV (sin-
gle layer), connecting the band gap between graphene (zero
bandgap) and TMD. Importantly, with increasing layers
number, the bandgap decrease [79]. Also, with regard to the
BP bandgap, the corresponding wavelength is between
0.6 and 4.0 μm, covering the visible band to infrared region.
BP has been widely used in the field of field-effect transis-
tors, photodetectors and solar cells due to the anisotropic in-
plane optical, electrical and thermal properties caused by
the BP puckered structure [80–82]. However, it is worth
noting that BP is highly unstable in the air, which is a quite
critical issue and challenge for practical applications.

2.4 TIs

TIs are a class of materials with topological electronic
properties. Typical TIs include bismuth telluride (Bi2Te3),
bismuth selenide (Bi2Se3), antimony telluride (Sb2Te3),
etc. [83]. This type of material has an insulating body
state, but the material exhibits metallic properties on the

surface due to the existence of a zero-gap Dirac-like
electronic bandgap (0.2–0.3 eV) similar to graphene
[84]. TIs have an ultra-wide saturation absorption band,
extending from visible light to the mid-infrared band. TIs
can be used for generating ultrashort pulse lasers due to
its narrow band gap and high modulation depth [85].
However, its electron relaxation time is relatively long,
which indicates that it is a slow saturable absorber ma-
terial comparing with graphene [86].

2.5 MXenes

MXenes are a class of 2D transition metal carbides, nitrides
or carbonitrides with a general formula of Mn+1AXn (n = 1,2
or 3), where typically M represents transition metal atom
(Sc, Ti, Cr, V, Nb, Hf, Ta, etc.), X is carbide and/or nitride
and T stands for surface termination unit (O, F, OH, etc.) as
shown in Figure 2(g) [87]. MXenes are mainly produced by
selective acid etching of the raw MAX phase.

The MAX phases are all hexagonally layered with
P63/mmc symmetry, where the M layers are almost closely

Figure 2: Structure and characteristics of TMD, BP and MXenes. (a) The schematic structure of TMDs, (b) AFM image of MoS2, and (c) Raman
spectrum of monolayer MoS2. (d) 2D view of the layered BP structure, (e) HR-TEM images of phosphorene and (f ) Raman spectras of BP with
different numbers of layers. (g) The schematic structure of MAX phase and the correspondingMxenes, (h) TEM imagewith scale of 200 nmand
(i) The linear absorption spectral of Ti3CT2. (a) [69], (b, c) [70], (d–f ) [78], (g) [87], (h, i) [88].
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packed, and X atoms fill the octahedral sites. Element A
atomic layer is interleaved with Mn+1Xn layers [87]. There
are many reports on the characteristics of the MXene. For
example, Figure 2(h) and (i) show a transmission electron
microscopy (TEM) image and the absorption spectrum of
Ti3C2Tx, reported by Wang [88]. Nowadays, MXene has
shown huge potential in diverse fields such as electro-
chemical catalysis, sensors, photoacoustic imaging, ul-
trafast photonics, etc. [89–92], due to the advantages of
flexible and adjustable composition, controllable thick-
ness and optical, electrical, magnetic properties [93].
Meanwhile, the application of MXenes on ultrafast pho-
tonics also have been achieved and demonstrated.

In summary, these 2D materials have many practical
applications in sensing, defense, military, biomedical, in-
dustrial processing, and other filed due to their unique
layered structure and electrical, optical characteristics.
However, with the continuous discoveries and researches
of 2D materials, the saturable absorption characteristics
and pulse shaping mechanism of 2D materials have also
been continuously confirmed. Therefore, the ultrafast
pulse laser technology based on these 2D materials has
attracted much attention both in fundamental researches
and in practical applications.

3 Synthesis methods for 2D
materials

As shown in Figure 3 [94], the synthesis methods of 2D
materials can generally be divided into two types: the top
down strippingmethod and the bottom up growthmethod.

The top down stripping methods include mechanical
exfoliation (ME), liquid phase exfoliation (LPE), chemical
exfoliation and laser thinning,which strips bulkmaterials
into mono- or few-layer 2D nanosheets by breaking the
van der Waals force between layers [95]. Bottom-up
methods, such as chemical vapor deposition (CVD), can
directly produce high-quality thin-film materials on mo-
lecular level by precisely controlling the chemical re-
actions between solid precursors. Here, we will briefly
introduce three of the material preparation methods that
are widely used in mode-locked fiber lasers, including
LPE, CVD, and ME.

3.1 ME

The ME technique is widely adopted in the fabrication of
atomically and few layers thick sheets of 2D layered

inorganic materials [96–99]. By overcoming the van der
Waals force and breaking apart layers from bulk materials,
researchers canobtainhighquality 2Dmono- and few-layer
materials. Because of its simplicity and ability to produce
high-quality few-layer materials, this technique was firstly
utilized in discovering graphene from graphite flakes by
Geim and Novoselov in 2004 [100, 101]. The exfoliated
mono- or few-layer materials have high completeness and
less defects, which are suitable for fundamental scientific
research. However, the monolayer yield of this process is
extremely low; hence, this method is only suitable for
laboratory scale studies and cannot be utilized for large-
scale production for high-end technological application.

ME using scotch-tape has been reported in many
studies for the synthesis of other 2D materials. Monolayer
BP is often obtained by this method. In order to minimize
the material’s exposure to the ambient, Zenghui Wang
et al. [102] incorporate special steps uniquely developed to
facilitate the transfer of BP after exfoliation. As shown in
Figure 4, they carefully stamped a small rectangular piece
of polydimethylsiloxane (PDMS) film, whose protection
layers were peeled off on both sides, onto a clean glass
slide. The BP samples were then exfoliated for dozens of
times before transferred onto the PDMS stamp quickly. BP
flakeswere carefully inspected under opticalmicroscope to
identify promising candidates for device fabrication, and
stored in vacuum chamber immediately afterward for
further investigation.

Although this process is relatively simple, fast and cost
effective, it has certain disadvantages. The monolayer ob-
tained by this process is extremely low and repeated
operation is required. Hence, this method is only suitable
for laboratory scale studies and cannot be utilized for large-
scale production for high technological applications.

3.2 LPE

As discussed in the previous section, ME of 2D layered
materials suffers from a low production rate that is not
technologically scalable in its current form. As an alter-
native method, LPE is a reliable way to produce single and
few layers 2D sheets at bulk scale. LPE can be broadly
classified into the following basic categories: (i) oxidation
followed by subsequent dispersion into suitable solvents,
(ii) ion intercalation, (iii) ion exchange and (iv) ultrasonic
exfoliation [103].

Among them, (i–iii) are chemical exfoliation methods
which can afford high-yield production of 2D material
nanosheets. However, the produced nanomaterials usu-
ally has poor dispersion ability. Another prevalent
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method is ultrasonic exfoliation, which is a purely phys-
ical method. This method is to conduct ultrasonic treat-
ment on the material under the action of dispersant,
separate the material sheet layer, and obtain the solution
of single or few layers after repeated ultrasonic treatment
and centrifuge. Figure 5 is an experimental flowchart of
the exfoliation process.

3.3 CVD

Generally, 2Dmaterials could be prepared via ME, LPE and
CVD. However, few layer materials obtained with the LPE

or MEmethods usually suffer from uncontrollable size and
random thickness [105, 106], which are detrimental for the
performance of a SA. As for bottom-up methods, CVD is an
important and scalable method to synthesize large-scale
2D materials. The first report on CVD growth of uniform,
large area graphene on a metal surface was in 2009. They
grew centimeter-sized graphene films on copper substrates
by CVD using methane [107]. W. Liu et al. prepared large
area and high lattice quality few-layer WSe2 by CVD and
applied it in mode-locked all-fiber laser, as shown in
Figure 6 [108].

Few-layer/multilayer materials can be easily prepared
by the CVD method. As for the SAs, the modulation depth

Figure 3: Classification of fabricationmethods
of 2D materials. Reprinted from ref. [94].

Figure 4: Steps involved in the flake preparation and transfer process. Reproduced with permission [102].

Figure 5: LPE method. (a) Starting material,
(b) chemical wet dispersion, (c)
ultrasonication and (d) final dispersion
after the ultracentrifugation process.
Reproduced with permission [104].
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can be increased by controlling layer numbers. However,
the preparation process is relatively complex and cost is
high (e. g., the material filmsmust be carefully transferred
onto target substrates, and transfer residues are difficult to
remove completely) [108–111].

4 Fiber integration with 2D
materials

To fabricate SAs for all-fiber mode-locked ultrafast fiber
lasers, many designs have been developed in order to
achieve sufficient interaction between 2D materials and
intracavity laser light. Generally, these incorporation de-
signs are different for solid-state lasers and fiber lasers. For
solid-state lasers, 2D materials are usually plated on high-
reflectionmirrors to achieve couplingwith the beam in free
space. For fiber lasers, the coupling should consider the
unique fiber property and many special designs have been
developed. Figure 7 shows some popular fiber coupling
schemes.

In 2007, Yamashita’s group first proposed and dem-
onstrates a simple method of sandwich structure, which
deposited carbon nanotubes (CNTs) onto the core area of
the optical fiber end [112]. The most commonly used is the
sandwich structure as shown in Figure 6(a). The prepared
2Dmaterials are embedded in a polymer film, which can be
organic polyvinyl alcohol (PVA) [113–118], polymethyl

methacrylate (PMMA) [119–123], PDMS [124] and so on.
Because the core of a single-mode fiber is usually very
small, it is necessary to cut the prepared polymer film into
some small individual films and sandwich it between two
fiber ferrules for transmission coupling. The main advan-
tage of the sandwiched structure is the strong interaction
between the SA and laser signal because of the direct
insertion of the SA into the laser cavity, leading to good
mode-locking performance [94]. Besides, it has low cost,
strong flexibility and strong controllability, which is more
conducive to the preparation of SAs. However, the scat-
tering of nanomaterials leads to additional thermal dissi-
pation [108, 125].

To scale the damage threshold of fiber SAs, another
common method is to deposit SA materials on a side pol-
ished fiber (SPF, also called D-shaped fiber) or tapered
fiber to obtain mode-locked lasers. In 2017, Yamashita’s
group presented fiber integration with CNTs based on SPF
and tapered fiber structure for the first time [126, 127]. In
this case, the evanescent field of the light beam in the fiber
interacts with 2D materials on the side, which reduces the
light intensity in the materials. As shown in Figure 7(b), Li
et al. show a graphene-clad microfiber modulator, which
was assembled by covering a mechanically exfoliated
graphene film on the surface of a microfiber [128]. They
fabricated electrically controllable in-line graphene de-
vices by integrating graphene-based field effect transistors
on a SPF with ionic liquid as electric gating medium
(Figure 7(c) [129, 130]).This method allows a very long

Figure 6: Schematic representation of the preparation of WSe2-
based SA. (a) The transfer process of WSe2 films. (b) Illustration of
WSe2 films on the end face of the optical fiber ferrule. (c) Illustration
of the inter-action between light and few-layer WSe2. Reproduced
with permission [108].

Figure 7: SA incorporation methods: (a) sandwiching SA between
two connectors, (b) depositing SAs on tapered fiber, (c) coating SAs
on side-polished fiber, and (d) filling SA into hollow photonic crystal
fibers (PCFs). (a) [131], (b) [128], (c) [129], (d) [132].
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interaction length and therefore is preferred in many ex-
periments investigating optical nonlinearity.

For an alternative approach, Z. B. Liu first reported a
fiber laser that was passively mode-locked by filling gra-
phene oxide (GO) solution into the photonic crystal fiber
(PCF) as a SA [133]. As shown in Figure 7(d) [132], the pre-
paredmaterial solution can befilled into the PCFwith high-
pressure injection method. Then, the solution-filled PCF
was oven dried in order to remove the solvent and splice
with the single-mode fiber [134]. Although PCF-based SA
has advantages of stronger interaction effect, longer
interaction length and larger nonlinear effect [135], this
type of SA device also has some problems such as larger
insertion loss, distortion of the guiding mode in the PCF
region and so on [136].

5 2D materials as SAs

The Mode-locked fiber lasers are gathering increasing
attention from fundamental research to practical applica-
tions. The nonlinear saturable absorption properties of low
dimension materials play an important part in mode-
locked laser mechanism and thus SAs have been utilized to
support ultrafastmode-locked operation in the laser cavity.
For the mode-locked laser output, the main components of
fiber resonant cavity include the pumping source, wave-
length division multiplexer (WDM), gain medium (rare
earth doped fibers), single mode fiber (SMF), polarization
independent/dependent optical isolator (PI-ISO/PD-ISO),
polarization controller (PC) and optical coupler (OC).
Meanwhile, some important parameters, such as operating
wavelength, 3-dB bandwidth, pulse width, repetition rate
and single pulse energy, characterize the performance of
mode-locked laser. In recent years, a variety of mode-
locked fiber lasers working at 1 μm (ytterbium-doped, Yb-
doped), 1.5 μm (erbium-doped, Er-doped), 2 μm (thulium-
doped, Tm-doped) and ∼3 μm (Er-doped ZBLAN) based
on novel 2D materials have been widely reported. In the
following sections, four typical lasers in different operating
wavelengths are summarized and discussed.

5.1 1 μm wavelength mode-locked fiber
lasers

Mode-locked fiber lasers working at 1 μm have good
application prospects in industrial processing, medical
and national defense fields, due to its high efficiency. In
general, Yb-doped fibers (YDF) are used as the gain me-
dium in the 1 μm region. Compared with Er-doped fibers

(EDF), YDF have a wider gain spectrum, lower quantum
loss and higher pumping efficiency, which are conducive
to the generation and amplification of high-power lasers. It
is universally known that the generation of all-normal
dissipative solitons (DS) with bell-shape spectra and large
chirp is the result of the balance of gain, loss, spectral
filtering, nonlinear effects and dispersion in the laser
cavity. In 2012, Li et al. demonstrated a self-started mode-
locked YDF laser with GO at different cavity length
(Figure 8a–c) [137]. In 2014, Zhang et al. first achieved a
stable mode-locking laser with a pulse duration of 800 ps
and a single pulse energy of 1.4 nJ based on MoS2-nano-
plantlets SA in the 1 μm region (Figure 8d–f) [138]. Subse-
quently, all-fiber Yb-doped laser based on various binary
materials, such as WS2, MoSe2, WSe2, Bi2S3, Bi2Te3, Sb2Te3
and so on, were gradually reported. In addition, some
ternary and even multiple materials were discovered for
their good nonlinear saturable absorption characteristics
and therefore were used as SA to generate laser pulses. In
2019, Ma et al. realized the noise-like mode-locked pulses
(NLP) operating at 1 μm wavelength by using few-layer
ReS1.02Se0.98 nanoflakes as SA (Figure 8g–i) [139]. Here,
many typical low dimension materials such as graphene,
TMD, TIs and so on, were applied for the ultrashort pulse
generation in the 1 μm region and have been presented in
Table 1. These corresponding data are also shown in
Figure 8, where the vertical axis represents the pulse width
and the horizontal axis represents the repetition rate. In
Figure 9, the shapes and colors of the marks represent
different materials.

In general, YDF lasers were in the all-normal disper-
sion region where DS were generated. The realization of
negative dispersion in YDF lasers cavity was extremely
challenging, because there were few anomalous group
velocity dispersion (GVD) fibers at 1 μm to compensate for
the normal dispersion in the gain fibers and SMF. How-
ever, there were some reports that have implemented
femtosecond pulses by using dispersion management
techniques with grating pairs, PCF, etc. For instance, Z.
Zhang et al. directly obtainedan output pulse of 8.7 ps at
the exit of the CNT-based YDF cavity. In order to obtain a
shorter pulse, a section of 2.1 m-long solid-core PCF was
added into the cavity for dispersion management, which
allows generation of 118 fs pulse (Ref. [160] in Table 1).
Also, Hou et al. designed a dispersion managed YDF laser
with a grating pair as compressor, which obtained the
shortest pulse width of 175 fs (Ref. [158] in Table 1). To
generate ultrashort pulses and large energy output in the
cavity is also a common goal pursued by researchers, so
Xile Han, et al. demonstrated a mode-locked Yb-doped
linear-cavity fiber laser with a total length of 194.54 m, in

J. Wang et al.: Recent advances in mode-locked 2321



which the net dispersion in the cavity are 3.45 ps2.
Although the repetition rate in the cavity is relatively low,
only 527 kHz, but a higher single pulse energy of 61.8 nJ is
obtained (Ref. [184] in Table 1). Furthermore, in 2013,
Shasha Li, et al. achieved the output of femtosecond pulses
of 93.8 fs with high single pulse energy of 60.1 nJ by using
double-clad Yb-doped gain fiber as the gain medium(-
Ref. [170] in Table 1).

From Table1 and Figure 9, SWCNT seem to presents the
best performance in the generation of shorter pulse output.
The output pulse width of YDF lasers based on graphene is
relatively wide due to the zero bandgap structure and low
modulation depth of the material. Some types of quantum
dot (QD) materials such as GaTe QD, NbSe2 QD, PbO QD
also are used as SA for mode-locking operation in YDF
lasers. Although Sb2Te3 obtains the largest bandwidth of
8.87 nm, the mode-locked duration of fiber laser is only
5.9 ps. YDF lasers based on 2D materials basically have a

relatively wide output pulse width because it is located in
the normal dispersion region and it is not easy to carry out
dispersion management due to the lack of anomalous
dispersion fibers. However, the DS it generates cause the
laser to output high single pulses energy. In addition, pe-
rovskites exhibit higher pulse energy than other 2D mate-
rials. Therefore, the dispersion management is a critical
factor to the output performance in mode-locked fiber la-
sers.

5.2 1.5 μm wavelength mode-locked fiber
lasers

EDF has strong gain at 1.5 μm, and its 40 nm wide spectral
profile is the atmospheric window for low loss optical
communication. Erbium-doped mode-locked fiber lasers
also own high power density, high coupling efficiency, and

Figure 8: Typical mode-locked fiber lasers working in the 1 μm region. (a) The schematic diagram of the mode-locked YDF laser based on
graphene oxide, (b) the optical spectrum with 94 m long cavity and (c) the pulse duration with the different cavity length. (d) Schematic of the
YDF lasermode-locked by theMoS2, (e) the optical spectrumand (f ) the oscilloscope tracing. (g) Diagramof themode-lockedfiber setupbased
onReS1.02Se0.98, (h) optical spectrumand (i) output pulse train (inset:magnified autocorrelation curve of the NLPs). (a–c) [137], (d–f ) [138], (g–
i) [139].
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Table : Performance summary of mode-locked fiber lasers operating at  μm by using various D materials as SAs.

SA Repetition
rate(MHz)

Output
power (mW)

Pulse
energy (nJ)

Pulse
duration (ps)

 dB
bandwidth (nm)

Center
wavelength (nm)

Refs.

Graphene . (CP). . .  . . []
. . . .

. . . . ns . . []
. . . . ns . . []
. . . . . . []

. – – . ns . . []
. . . . ns . . []
. . . . ns . . []

. . . . ns . . []
.    . . []
.      []

. . .  –  []
. . .  . . []

. . . . ns . . []
BP . . .  . . []

. . .  . . []
. – – – – . []
. – – . ns .  []

Au-nanotube . (CP). . –  . . []
. . . . .

SWCNT . . .  . . []
. . . (CP). . . . []

. . .
. . . . .  []
 . . ./(CP) fs .  []

. – – . . . []
. . .  .  []

. . . . . . []
  .  . . []

. . .  . . []
. . .  .  []
  .  . . []

.  .  . . []
. . .  ns . . []
.  . . . . []
   . –  []

Bismuthene . . . . . . []
MoS . . .  . . []

. . . . . . []
.  .  .  []

. . . . .  []
WS .  .  . . []

.  .  . . []
– – .   . []

SnS . . .  . . []
. . .  .  []
 . .  . . []

BiS .  .  .  []
BiSe . . .  . . []

. . .  . . []
BiSe . . .  . . []

 . .  – . []
. . .  .  []

. . .  ns – – []
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compact structure. In 2014, Jeong et al. demonstrated a
dissipative soliton fiber laser with high pulse energy based
on a SWCNT-SA. The laser stably delivered linearly chirped
pulses with a pulse duration of 12.7 ps, and exhibited a
spectral bandwidth of 12.1 nm at the central wavelength of
1563 nm. Average power of the laser output was measured
as 335 mW (Figure 10(a–c)) [203]. In 2017, Yin et al. studied
the saturable absorption of CVD grown WSe2 films with
large-scale and high quality. They used WSe2 films as a
broadband SA for passively mode-locked fiber lasers with

the pulse durations of 477 fs at 1.5 μm(Figure 10(d–f)) [204].
In 2018, Liu et al. investigated MoS2-Sb2Te3-MoS2 hetero-
structure materials with uniformity by employing the
magnetron sputtering technique at 1.5 μm mode-locked
fiber laser, which had a large modulation depth and high
reliability (Figure 10(g–i)) [205]. Recently, the change in
repetition frequency and pulse width of low-dimensional
material mode-locked fiber lasers are demomstrated,
which is shown in Figure 11.

Unlike YDF lasers, both DS and conventional solitons
(CS) can be generated by dispersion management in EDF
lasers. Among them, DS will obtain higher single pulse
energy, while CS are easier to achieve shorter pulses and
slight chirp. Therefore Er-doped lasers can work in both
normal and anomalous dispersion regions. For example,
Lei Gao, et al. proposed two kinds of (DS and CS) EDF
mode-locked laser based on Bi2Se3 nanosheets. The CS
laser system had a total length of 10.1 m with the net
anomalous dispersion of −0.232ps2, which generated 908 fs
pulse output. While DS laser obtained a pulse width of
7.564 ps, whose the total length of 29.1 m and the net
normal dispersion of 0.104 ps2 (Ref. [229] in Table 2). In
addition, there are some reported on the mode-locked due
to combined action of a 2D SA and nonlinear polarization
evolution (NPE). In 2015, Liu et al. proposed a hybridmode-
locked EDF laser incorporated with Sb2Te3, in which NPE
was utilized to achieve ultra-short pulses and high average

Table : (continued)

SA Repetition
rate(MHz)

Output
power (mW)

Pulse
energy (nJ)

Pulse
duration (ps)

 dB
bandwidth (nm)

Center
wavelength (nm)

Refs.

BiTe . . .  . . []
.  .  . . []
. .   . . []

Graphene- BiTe . . – . . . []
. – – . . . []

SbTe . . . – . . []
.  . . . . []
. . . . . . []

. . . . . . []
PtSe . . .   . []

. . .  . . []
InSe . . .  . – []
GaTe QD .  .  – . []
NbSe QD . . .  .  []
MoC . – –  . . []
PbO QD . . .   . []
NiPS . . . . . . []
CHNHPbI . . .  .  []
CHNHSnI . . .  .  []
TiCTx .  .  . . []
TiCTx . – – . . . []

CP: after compression.
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Figure 9: Pulse width versus repetition rate of 2D materials based
mode-locked Er-fiber lasers.
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power output. By this means, the laser system generated
ultrashort pulses with the pulse width of 70 fs and average
power of 63 mW [262]. Also, Bogusławski et al. demon-
strated a hybrid mode-locked fiber laser in the same year,
which was observed sub-200 fs pulse output [263].

Compared with the YDF mode-locked lasers, the EDF
mode-locked lasers have obvious advantages in gener-
ating shorter pulse lasers and more potential applica-
tions such as optical communications system, and the
frequency comb system. In addition, the smallest trans-
mission loss also exists in the 1.5 μm wavelength in the
single mode fiber. In Table 2, the majority of in-
vestigations focused on the SWCNT, BP, TIs, and TMD.
Few reports revolved in the MXenes and ternary TMD SA,
in which TMD SA presents good pulse duration and high
repetition rate, as shown in Figure 11. Therefore, TMD is
expected to produce better output characteristics in
terms of ultrashort pulses and high repetition rates. In
addition, the pulse width obtained by the EDF laser based
on TIs was less than 5 ps, which also shows an excellent

saturable absorption characteristic in the 1.5 μm wave-
length. Although the single pulse energy generated by
the EDF laser based on 2D materials is relatively small,
TIs seem to be more dominant after comparison.

Figure 10: Typical mode-locked fiber lasers working in the 1.5 μm region. (a) configuration of the constructed all-fiber ring laser using an
SWCNT-SA, (b) optical spectrum and (c) auto-correlation trace (inset: auto-correlation trace after compression). (d) Schematic illustration of
the typical ring cavity of themode-locked fiber laser basedon themicrofiberWSe2 SA, (e) output optical spectrumwith solitonic sidebands and
(f ) auto-correlation trace of mode-locked pulse with a sech2

fitting curve. (g) Configuration of the mode-locked EDF laser based on MoS2-
Sb2Te3-MoS2 heterostructure SA mirror, (h) optical spectrum and (i) pulse duration. (a–c) [203], (d–f ) [204], (g–i) [205].
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Figure 11: Pulse width versus repetition rate of 2D materials based
mode-locked Er-fiber lasers.
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Table : Performance summary of mode-locked fiber lasers operating at . μm by using various D materials as SAs.

SA Repetition
rate(MHz)

Output
power (mW)

Pulse
energy (nJ)

Pulse
duration (ps)

dB
bandwidth (nm)

Center
wavelength (nm)

Ref.

SWCNT . . . . . . []
. . . . . . []

(DW). . . . . . []
. . . . . .
. . . pJ .  . []
.   . .  []
 . . pJ . .  []
. . . . . . []

. . . .   []
. . . .   []

. . . . .  []
.  . . .  []

. . . .   []
BP . – – . . . []

. – – . . . []
. – – . . . []
. . . . . . []
. – – . . . []
. – – .   []

(H). . . .   []
. . . . . . []
. . . .   []
. – – . . . []

BiSe . – – . . . []
. . . . . . []

. (HML)
(HML)

– – .
.
.

. .
.
.

[]

(CS).
(DS).

.


. .
.

.


.


[]

. – – . .  []
.  . . .  []
. . . . . – []
. . . . ns . . []

BiTe . . . . ns .  []
.  . . . . []

. . . . .  []
. – – – . . []
. – – .

.
.
.

 []

. . . . ns . . []
. . . . . . []

CoSb . – – . . . []
MoS . . . . . . []

– . .  []
. . . . . . []
. . . . . . []

.  – .   []
. (CP). – – .

.
.

.




[]

MoS . . . – . . []
. – – .  – []
. – – . . . []
.  . . .  []
. – – .  . []
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5.3 2 μm wavelength mode-locked fiber
lasers

Thulium/holmium-doped fiber lasers with operating
wavelength of around 2 μm, which is near the absorption
peak of water molecules, have attractedmuch attention for

applications in the field of laser surgery, remote sense,
laser radar and optoelectronic countermeasures, due to the
advantages of high efficiency, easily pump and cavity
stability. In recent years, mode-locked Tm-doped fiber la-
sers (TDF) based on new-type low-dimension materials
have been investigated widely. In 2018, Wang et al.

Table : (continued)

SA Repetition
rate(MHz)

Output
power (mW)

Pulse
energy (nJ)

Pulse
duration (ps)

dB
bandwidth (nm)

Center
wavelength (nm)

Ref.

 . – . . . []
. . . . . . []
. – – . . . []

MoS-WS . . . . .  []
MoS-SbTe-MoS .  . .   []
MoTe – . – . .  []

 – . . . []
.  . . . . []

ReSe . – – . . . []
ReS . . . . []
TiS . . . . . []
SbTe (H).  . .   []

(H)  . . . . []
. . . .   []
. – . .   []

  . ./(CP). . − []
. . – . –  []

. – – .   []
. . . . . . []

. (HML) .  . .  []
. . . . .

WS . – – . .  []
. – – . .  []

– – – . .  []
./. ./. – ./. ./. / []

. . . . . . []
. . – . – . []
. . . . . . []

WSe . – – . . . []
WTe . – – . . . []
CuS . . . . . . []
GaSe . . . . .  []
GeP . . . . . . []
rGO . – – . . . []
MgO . . . . . . []
MXenes . – . . . – []

. – – . . . []
. . – .   []
. – – . . . []

PtSe . – . .   []
ReS(-x)Sex . . . . . . []
SnS . . . . . . []
SnSe . . – . .  []

HML: harmonic mode locking; CP: after compression; DW: dual-wavelength; H: hybrid mode locking; CS: conventional solitons; DS: dissipative
solitons.
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reported Tm-doped mode-locked laser based on MoTe2 SA
fabricated by the magnetron sputtering deposition method
for the first time. The pulse duration and single pulse en-
ergy were 1.3 ps and 13.8 nJ, respectively (Figure 12a–c)
[289]. In 2019, Pawliszewska M et al. firstly achieved Ho-
doped fiber (HDF) laser operating in anomalous and
normal dispersion regimewithmetallic CNT film fabricated
by vacuum filtration technique (Figure 12d–f) [290]. Some
important parameters generated by low dimension mate-
rials-based Tm/Ho-doped fiber lasers have been listed in
Table 3. Similarly, these corresponding data are also
shown in Figure 13.

Due to quality beam and small thermal damage, TDF
laser based on 2D materials can achieve rapid hemostasis
without causing damage to the human body, and therefore
is widely used in surgical treatment. There are only a few
studies on TDF lasers based on 2D materials, but they all
show outstanding performances. We found the ternary
TMD SA shows the good performance such as large pulse
energy and wide operating wavelength. For example,
ReS1.02Se0.9 based mode-locked fiber lasers can work at
1.5 and 2 μm wavelength, as shown in Table 3. Figure 12
shows six types ofmaterials that all are able to realizemode
locking in 2 μm region. The best one is graphene SA, which
can generate the shortest pulses of 205 fs and the highest
repetition rate of 58.87MHz in the Tm/Ho-doped fiber laser.

TMDs and TIs SA also present good output characteristics
in generating short pulse width. TIs show higher single
pulse energy, which is very important for practical appli-
cations.

5.4 2∼3 μm wavelength mode-locked fiber
lasers

Mid-infrared mode-locked lasers have important applica-
tions in many fields such as food, medicine, military and
molecular fingerprints. The past decade has seen the rapid
development ofmid-infrared fiber lasers which is driven by
the great demand in awide range of applications including
spectroscopy, medical diagnosis, etc. [312, 313]. In partic-
ular, Er: ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fiber lasers at
3 μm have attracted wide attention owing to the advances
of fluoride fiber fabrication. Mode-locking operation of an
Er-doped ZBLAN fiber laser in the 3 μm wavelength region
was first demonstrated by Frerichs and Unrau using the
flyingmirror technique and an InAs SA [314]. In 2015, Z. Qin
et al. reported a passively mode-locked Er:ZBLAN fiber
laser based on the mechanically exfoliated BP plated onto
the gold-coatedmirror, which delivers amaximumaverage
output power of 613 mW, a repetition rate of 24 MHz and a
pulse duration of 42 ps, respectively [315]. A mid-infrared

Figure 12: Tm-dopedmode-locked fiber laser. (a) Schematic of the passively mode-locked TDF laser based onMoTe2 SA, (b) optical spectrum
with the bandwidth of 3.2 nm and (c) autocorrelation trace with a pulse duration of 1.3 ps with sech2

fit (The insert shows the autocorrelation
tracewith a large range of 50 ps). (d) Setupof theHDF laser basedonCNT, (e) performance of the laser operating in the solitonic regime: optical
spectrum and pulse autocorrelation and (f ) stretched pulse regime: optical spectrum and autocorrelation trace. (a–c) [289], (d–f ) [290].
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mode-locked fluoride fiber laser with Bi2Te3 nanosheets as
the SA is presented reference [316]. More data for 3 μm
mode-locked fiber lasers are listed in Table 4.

Table 4 shows that fewer materials can be used to
trigger the mode-locking operation in the Er-doped ZBLAN
fiber laser. For the novel 2Dmaterials-based SA, TIs and BP
were commonly used and suitable for 3 μm mode-locked
fiber lasers due to its ultra-narrow bandgaps. Although BP
has excellent performance in the 3 μm wavelength region,
the environmental stability of BP is still an obstacle to its
photonics applications.

In the above four tables that summarize the applica-
tions of 2Dmaterials in ultrafast photonics, the pulse width
obtained after additional external compression or through
hybrid mode locking has been listed. Generally, the larger
dispersion in the cavity, the lower prepetition rate is.On the
contrary, the cavity with a higher repetition rate can
generate a higher pulse energy.

6 Summary and outlook

In summary, owing to their unique properties, a plenty of
emerging 2D materials were explored as SA to realize
mode-locked fiber lasers. In this review, we summarize

Table : Performance summary of mode-locked fiber lasers operating at  μm by using various D materials as SAs.

SA Repetition
rate (MHz)

Output
power (mW)

Pulse
energy (nJ)

Pulse
duration (ps)

 dB
bandwidth (nm)

Center
wavelength (nm)

Ref.

BP . . . .  []
.  . . .  []
. . . . .  []

CNT  . .   []
. . . . .  []

 . .   []
. . . . .  []

  . . .  []
Graphene .  . . .  []

. . . . . . []
. . .   []
 . . .  []

.  . . .  []
GO . . . .  []
NiO . . . ns . . []
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. ∼ . .  []
CoSb . . . . []
MoS .  .  .  []
MoSe . . . .  []
MoTe .  . . . . []
WS . . . . .  []
WSe . . . . . . []
WTe . . . . . . []
TiCTx . . . . .  []
ReS.Se. .  . .   []
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Figure 13: Pulse width versus repetition rate of 2D materials based
mode-locked Tm/Ho-fiber lasers (marks with different shapes and
colors represent different materials).
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different types of 2D material SAs, according to their
operating wavelengths in mode-locked fiber lasers. i) At
the 1 μm region, there are plenty of materials can be SAs in
the YDF mode-locked lasers, such as graphene, BP, Au-
nanotube, SWCNT, Bismuthene, MoS2, WS2, SnS2, Bi2S3,
Bi2Se3 etc. However, some emerging 2Dmaterials are not as
good as the mature SWCNT in the Yb-fiber pulses lasers.
One can further explore its potential applications in the
ultrafast photonics. ii) At the wavelength of 1.5 µm, one can
easily fabricate fiber devices by managing the dispersion
and the nonlinearity at low cost and with low loss in the
fiber cavity. At this case, TMD SA presents better pulse
duration and higher repetition rate. iii) At the 2 µm wave-
length, the ternary TMD SA shows large pulse energy, wide
operating bandwidth. In operation wavelength beyond
3 µm, the BP SA shows the best performance in the mode-
locked Er-doped ZBLAN fiber laser.

The outlook about the 2D materials SA in the fiber
mode-locked laser field are listed as follows : i) Lucubrat-
ing on the applications of mature materials based SAs,
such as CNT, graphene and BP, which are able to work at
multiple wavelengths including 1, 1.5, 2 µm and even 3 µm
in the fiber pulse lasers. ii) Exploring new compound alloy
materials or the combination of traditional materials with
the emergingmaterials in order to obtainwider bandwidth,
higher damage threshold and lower insert loss. In addition,
one can tailor the bandgap for specific wavelength through
varying the number of layers of single atom materials and
the elemental proportion. In addition, the multi-elemental
materials with high damage threshold and wide operation
bandwidth are worth investigating, such as ternary TMD
family SA. The exploration of potential 2Dmaterials for the
commercial product in the mode locked lasers is also
crucial issue for the future research. Although many kinds
of materials can be used for the ultrafast fiber lasers, there
are still not a commercial product like semiconductor
saturable absorber mirror (SAM). We believe the research
on the multifunctional 2D material SAs for mode-locked
fiber lasers will attract much attention in near future.
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