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We report on the generation of optical pulses with a nearly one octave-spanning spectrum ranging from 1300 nm to
2500 nm at 1 kHz repetition rate, which are based on intra-pulse difference frequency generation (DFG) in β -barium borate
crystal (β -BBO) and passively carrier-envelope-phase (CEP) stabilized. The DFG is induced by few-cycle pulses initiated
from spectral broadening in multiple thin plates driven by a Ti: sapphire chirped-pulse amplifier. Furthermore, a numerical
simulation is developed to estimate the conversion efficiency and output spectrum of the DFG. Our results show that the
pulses from the DFG have the potential for seeding intense mid-infrared (MIR) laser generation and amplification to study
strong-field physics and attosecond science.

Keywords: infrared pulses, difference frequency generation, ultrafast laser
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1. Introduction
In recent years, remarkable progress in the generation of

intense laser pulses has opened new fields in attosecond sci-
ence, strong field physics, time-resolved spectroscopy, and
nonlinear optics.[1–4] Among these important applications,
high energy few-cycle laser pulses in the mid-infrared (MIR)
region with stabilized carrier-envelope phase (CEP) are con-
sidered as the optimal drivers for high photon energy isolated
attosecond pulse generation.[5,6] Currently, such pulses with
center wavelength near 1.8 µm have already enabled the gener-
ation of attosecond pulses in the soft x-ray water window.[7–9]

The generation of pulse with 53-as duration was reported in
2017.[10] Up to now, isolated attosecond pulses as short as
43-as experimentally generated by utilizing intense two cycle
driving pulses around the central wavelength of 1.8 µm have
been demonstrated.[11]

Compared with pulses from mode-locked lasers directly,
three-wave mixing method such as optical parametric amplifi-
cation (OPA) or optical parametric chirped pulse amplification
(OPCPA) is an alternative and more effective way of generat-
ing high energy ultrafast MIR pulses near 2 µm.[12,13] A suf-
ficient seed bandwidth is a critical prerequisite to achieve an
ultra-broadband output spectrum in OPA or OPCPA. Conse-
quently, intra-pulse difference frequency generation (DFG) is
proposed and employed as the MIR seeding source for several

features, including more than one octave broad phase match-
ing bandwidth, no jitter between the pump and the signal, and
passively stabilized CEP for the idler since the pump and the
signal are within the same pulse.[14–16]

Achieving such tunable MIR lasers via intra-pulse DFG
typically requires an ultra-broadband spectrum from the super-
continuum generation (SCG) process. The mainstream tech-
nique to generate few-cycle pulses is to broaden the spec-
trum of multi-cycle pulses from laser amplifiers through inert-
gas-filled hollow-core fibers (HCFs) and compress the pulse
width with chirped mirrors.[17,18] Nevertheless, such process
requires pulses with energy on the order of mJ, and the trans-
mission is usually only ∼ 50% primarily caused by multipho-
ton processes and waveguide mode selection.[19] In addition,
SCG based on HCFs requires a strict beam stability for inject-
ing the laser pulse into the several-hundred-micron core of the
fiber.

Recently, a novel technique containing multiple thin
plates has been developed to efficiently increase the bandwidth
of high energy multi-cycle laser pulses as an alternative to gen-
erating filamentation in an HCF.[20,21] It has been reported in a
variety of spectral range coving 400 nm to 3500 nm and pulse
energy from the level of hundreds of µJ to a few of mJ.[22–26]

The spectrum of the driving laser is broadened by self-phase
modulation (SPM), self-steepening, and self-focusing in an ar-
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ray of strategically positioned thin plates. This multi-plate
scheme is applicable with a broad range of input energy in var-
ious materials, simultaneously offering transmittance higher
than 85%.[27] Furthermore, such a multi-plate system offers
high stability and good mode quality, while the advantages of
compactness and operational simplicity are preserved.

In this paper, a broadband MIR pulse generated via intra-
pulse DFG in β -barium borate crystal (β -BBO) is put forward,
which is driven by few-cycle pulses obtained through spectral
broadening in multiple thin plates. The DFG pulse has a broad
spectrum covering from 1300 nm to 2500 nm with passively
stabilized CEP. This system can endure variable input energy
and produce broadband MIR pulses. In addition to the experi-
mental results, a numerical simulation is developed to estimate
the conversion efficiency and output spectrum of the DFG.

2. Experimental setup and results
Figure 1 shows the experimental setup. The optical setup

mainly consists of two parts: (A) SCG source and pulse com-
pression, (B) intra-pulse DFG in a nonlinear crystal. In the
SCG part, the driving source is a mode-locked Ti: sapphire
laser with chirped pulse amplification (CPA) by a multi-pass
amplifier, whose spectrum is presented with a dashed line in
Fig. 2(a). The pulse energy is about 800 µJ at a repetition
rate of 1 kHz with a pulse width of 30 fs (full width at half
maximum, FWHM). To obtain an SCG, the seed femtosec-
ond laser pulse at 500 µJ is focused into seven pieces of thin
fused silica with thickness of 100 µm by an f = 2000 mm lens,
and the output beam is collimated by a concave mirror with
a focal length of 1000 mm. In this configuration, the pulse
spectrum broadens sequentially in each plate and acquires a
nonlinear phase sufficient for self-focusing. Several materials
have been utilized in our experiment, such as fused silica, sap-
phire, and YAG, and fused silica shows the best performance
among them. The beam size within the Rayleigh length and
the position of the silica are the two keys during the SCG. By
adjusting the parameter of the focusing lens, the focal beam di-
ameter is around 600 µm, corresponding to a peak laser power
density of 1× 1013 W/cm2. To avoid damage and ionization,
the silica is kept away from the focal point and the positions
of the plates are subtly chosen by compromising between the
maximum spectral widths and transmission efficiency. Com-
pared with traditional HCFs, SCG by multiple thin plates is
more compact and can support mJ injected pulse energy with
high beam quality, which is a considerable advantage in our
experiment for further OPCPA or OPA development.

The spectrum of SCG is shown with a solid line in
Fig. 2(a), covering from 500 nm to 900 nm, which is equiv-
alent to that of a Fourier-transform-limited (FTL) pulse with
a 7.1 fs pulse width, as shown in Fig. 2(b). The SCG is com-
pressed to sub-10 fs pulses with 350 µJ by a set of chirped

mirrors. A concave silver mirror with radius of curvature of
1000 mm is used to focus the incident beam to 200 µm in di-
ameter at the focal point. A BBO crystal is chosen as the DFG
medium for its high transparency in the visible and IR spectral
ranges with high nonlinearity and high damage threshold. The
DFG takes place in the 0.5 mm thick β -BBO crystal for type
II phase-matching, e.g., 600 nm (e)→ 900 nm (e) + 1800 nm
(o). To obtain the DFG spectrum, a piece of Si as a band pass
filter (BPF) is used to remove the residual driving pulse.

Ti:sapphire
amplifier

multiple thin

CM1

CM2

chirped mirrors

OSA

Si
BBO

lens
HR

plates

Fig. 1. Schematic diagram of the experimental setup. HR: high
reflection-coated mirror; CM1 and CM2: concave mirrors with silver
coating; OSA: optical spectral analyzer.

400 500 600 700 800 900 1000

Wavelength/nm

0

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
li
z
e
d
 i
n
te

n
si

ty
N

o
rm

a
li
z
e
d
 i
n
te

n
si

ty
(a)

-30 -20 -10 0 10 20 30
Time/fs

0

0.2

0.4

0.6

0.8

1.0
(b)

Dτ=7.1 fs

SCG
Ti: saphhire

Fig. 2. (a) Solid line: SCG after seven fused silica plates; dashed line:
spectrum of Ti: sapphire CPA. Inset: the output beam profile taken
before the collimating mirror. (b) Transform-limited pulse duration of
7.1 fs from the SCG.

To determine the crystal cutting angle, phase-matching
conditions with different angles of 32◦, 34◦, 36◦, and 38◦

are shown in Fig. 3. The horizontal and vertical axes are the
components of the driving pulse. The color bar indicates the
phase-matching efficiency determined by sinc(∆kL/2), where
∆k denotes the phase-mismatch per unit length and L is the
length of the BBO crystal. The dark blue region denotes the
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phase-matched area, corresponding to high phase-matching
efficiency. The solid color lines indicate different idler wave-
lengths. If the lines pass through the phase-matched region,
it indicates that this particular angle of the crystal supports
effective production of the idle wavelength. More lines pass
through the blue area, broader DFG spectrum the crystal an-
gle supports. In our experiment, the spectrum of the driving
pulses covers 500 nm to 950 nm. Considering the spectrum of
the driving source, we add a dashed line to show the actually
working region. The region above the dash line will take place
in our situation while below will not. From Figs. 3(a)–3(d),

the blue area becomes narrower with the angle increasing from

32◦ to 38◦, which means that the bandwidth of DFG decreases.

For example, the DFG spectrum near 2400 nm will not be gen-

erated in the BBO crystal with a cutting angle of 32◦ based on

our simulation. On the other hand, the blue area moves to-

ward the short wavelength side along the vertical axis, show-

ing that the overall efficiency rises since the blue area grows

large. Considering the spectrum of the driving pulse, the blue

area of 36◦ is larger than that of 38◦, so we choose the cutting

angle of the BBO crystal at 36◦.
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Fig. 3. Phase mismatch diagrams at different phase matching angles: (a) 32◦, (b) 34◦, (c) 36◦, and (d) 38◦.
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Fig. 4. (a) DFG spectrum. (b) Transform-limited pulse duration of 11 fs from the DFG spectrum.

By optimizing the angle and position of the BBO crys-

tal, near octave-spanning MIR DFG pulses are generated and

measured by an optical spectral analyzer (Ocean Optics, NIR-

Quest). Due to the measurement range of the spectral analyzer,

the DFG spectrum is limited to 1300 nm to 2500 nm, as illus-

trated in Fig. 4(a). Figure 4(b) shows the calculated FTL pulse
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with a duration of 11 fs that contains a 1.8 cycle carrier at the
central wavelength of 1800 nm.

3. Numerical simulation and results
The energy of the DFG signal in our experiment is at nJ

level. To investigate the impact of different phase-matching
conditions, we develope a numerical simulation to illustrate
the phase-matching process and evaluate the output bandwidth
and conversion efficiency by solving a series of coupled wave
equations in frequency domain. At first, we split the spec-
trum of the pump, signal, and idler waves into discrete parts
by means of discrete Fourier transform. Then, we rewrite the
second order nonlinear polarization. For each individual fre-
quency component, the corresponding nonlinear polarization
is involved in a series of terms under the law of energy con-
servation, which indicate the coupled nonlinear interactions.
Assuming all series of mixing waves are plane waves, we de-
rive the following equations from Maxwell equations:

dEpump
i (ωi)

dz
=

iωi

2n(ωi)c
deff

N2

∑
ω j

N3

∑
ωk

Esig
j (ω j)E idle∗

k (ωk)

× e i(ki−k j−kk)zδωk,ωi−ω j , (1)

dEsig
j (ω j)

dz
=

iω j

2n(ω j)c
deff

N1

∑
ωi

N3

∑
ωk

Epump
i (ωi)E idle∗

k (ωk)

× e i(ki−k j−kk)zδωk,ωi−ω j , (2)

dE idle
k (ωk)

dz
=

iωk

2n(ωk)c
deff

N1

∑
ωi

N2

∑
ω j

Epump
i (ωi)E

sig∗
j (ω j)

× e i(ki−k j−kk)zδωk,ωi−ω j , (3)

where

δωk,ωi+ω j =

{
1, ωk = ωi−ω j,
0, ωk 6= ωi−ω j,

E is the electric-field amplitude, deff is the effective second-
order nonlinearity, ω is the angular frequency, n is the refrac-
tive index, and c is the light speed in vacuum. The contribution
of each nonlinear process is determined by the correspond-
ing phase-matching condition and the amplitude of the corre-
sponding electric field. By taking Sellmeier equation of the
BBO into these equations, the method can be applied to evalu-
ate the conversion efficiency and the output spectrum of DFG.
Considering the transmission window of the BBO crystal, the
spectra and efficiencies of DFG from numerical simulations
are shown in Fig. 5(a) under different phase-matching condi-
tions with cutting angles of 32◦, 34◦, 36◦, and 38◦. It should
be pointed out that the vertical axis in Fig. 5 is normalized for
different phase-matching conditions.

From Fig. 5(a), the width of the spectrum increases with
the cutting angle. It is consistent with the variation of the blue
area shown in Fig. 3. However, the FWHM of the spectrum in-
creases from 32◦ to 36◦, and decreases when the cutting angle

further increases to 38◦. It is due to that the efficiency has a
remarkable increase when the cutting angle is 38◦ as shown in
Fig. 5. This increase of efficiency is mainly concentrated near
the central wavelength. The progressive increase in efficiency
with increasing cutting angle can be explained by that the blue
area moves toward the short wavelength side along the vertical
axis, approaching the 800 nm waveband as shown in Fig. 3.
The main intensity of the driving source is around 800 nm.
Therefore, the process of DFG can be enhanced. To produce
higher energy DFG, one may increase the thickness and use a
medium with higher nonlinearity, or increase the energy in the
long and short wavelength sides in the driving pulse. Besides,
increasing the peak power of the incident pulse may be useful
as well.
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Fig. 5. (a) Spectra and efficiencies of DFG from numerical simulations
at different phase matching angles. (b) The shape detail of the spectrum
of 36◦.

Though high efficiency can enhance the process of DFG,
greater FWHM of the spectrum is a more critical parameter
which is beneficial for further research. Overall considering,
the spectrum and efficiency of DFG of 36◦ cutting angle are
optimized. In Fig. 5(b), the shape of the spectrum of DFG of
36◦ is shown. It reveals that the numerical simulation at 36◦

has a good agreement with the shape of the spectrum in our
experimental result as shown in Fig. 4(a).

4. Conclusion and perspectives
In summary, ultra-broadband MIR pulses initiated from

intra-pulse DFG in BBO crystal are experimentally investi-
gated. Instead of traditional HCFs, multiple thin plates are uti-
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lized to generate SCG based on a Ti: sapphire CPA to support
such tunable MIR pulses. This scheme is compact and adapt-
able with various energy and wavelength of the injected laser
pulses, which are non-sensitive to the pointing stability of the
driving laser. It is a useful tool to realize the wavelength con-
version and pulse compression in ultrafast optics field. A BBO
crystal at 36◦ cutting angle is chosen for the type II phase-
matching interaction. The spectrum of DFG covers an octave
from 1300 nm to 2500 nm, which supports an FTL pulse of
11 fs width. In addition, a numerical simulation is developed
to estimate the conversion efficiency and output spectrum of
the DFG, which matches our experimental result well and has
significant impact on designing and improving experiments
and optical components in nonlinear optics research. Due to
the broad spectrum and passively stabilized CEP, the intra-
pulse DFG derived from the multiple-plate scheme is versatile
as a promising candidate in seeding a high-energy OPCPA or
OPA for further applications in studying strong field physics
and attosecond science.
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G J, Zapata L E and Kärtner F X 2014 Opt. Lett. 39 3145

[14] Fuji T, Ishii N, Teisset C Y, Gu X, Metzger T and Baltuška A 2006 Opt.
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