
Diode-pumped high-power sub-100 fs Kerr-
lens mode-locked Yb:CaYAlO4 laser with 1.85 
MW peak power 

WENLONG TIAN,1 CHEN YU,1 JIANGFENG ZHU,1,5 DACHENG ZHANG,1 ZHIYI 
WEI,2,6 XIAODONG XU,3 AND JUN XU

4 
1School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China 
2Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy 
of Sciences, Beijing 100190, China 
3Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic 
Engineering, Jiangsu Normal University, Xuzhou 221116, China 
4School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 
200092, China 
5jfzhu@xidian.edu.cn 
6zywei@iphy.ac.cn 

Abstract: We demonstrated a diode-pumped high-power Kerr-lens mode-locked 
Yb:CaYAlO4 (Yb:CALYO) laser with a dual-confocal cavity, directly generating 59-fs pulses 
with 6.2 W average power, which is the highest average power from any sub-60 fs Yb-doped 
solid-state lasers. With the repetition rate of 50 MHz, the corresponding single pulse energy 
was 124 nJ and the peak power was 1.85 MW, which to the best of our knowledge is the 
highest peak power delivered directly from a sub-100 fs Yb-based bulk lasers ever. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  

1. Introduction 

Over the past few decades, there has been great interest in the development of high-power 
femtosecond lasers for wide applications in industrial and scientific researches. At present, 
the most mature high-power femtosecond laser is the Kerr lens-mode-locked (KLM) 
Ti:sapphire laser, but the Ti:Sapphire laser is currently limited to the existing pump source 
power and the quantum efficiency of the crystal itself. As another excellent candidate for high 
power ultrashort pulses generation, Yb-doped materials have attracted increasing attentions 
due to their large emission bandwidth, high quantum efficiency, and excellent thermal 
properties. In addition, Yb-doped materials can be directly pumped by commercially high 
power laser diodes (LD), which gives them a significant advantage towards achieving high-
power, compact and cost-effective femtosecond solid-state lasers. 

So far, Yb-based bulk lasers delivering watt-level sub-100 fs pulses have been reported 
with a few kinds of gain media, such as Yb:CALGO [1–4], Yb:CaF2 [5–7],Yb:CALYO [8], 
Yb:KGW [9–12], Yb:YSO [13], Yb:YVO4 [14], and Yb:Lu2O3 [15] as well as Yb:LuAG 
ceramic [16]. Among them, Yb3+ doped CaGdAlO4 (CALGO) crystal performed both the 
highest average power and shortest pulse duration, respectively, due to its excellent 
spectroscopic and thermal properties [17]. As the same member of Yb-doped calcium 
aluminate crystals, Yb:CaYAlO4 (Yb:CALYO) which is easier to grow and fabricate also has 
similar properties including a broad fluorescence spectrum with the full width at half 
maximum (FWHM) of up to 77 nm at the σ polarization [18], and moderate thermal 
conductivities of Ka = 3.6 Wm−1K−1 and Kc = 3.2 Wm−1K−1 along it’s a and c axises [18]. In 
addition, Yb:CALYO crystal has relatively higher specific heat capacity, which means a 
larger optical damage threshold. A recent investigation on the thermo-optic dispersion 
formulas of both CALGO and CALYO laser host crystals shows that the thermo-optic 
properties of CALYO are slightly better than those of CALGO, which makes Yb:CALYO 
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The schematic of the experimental setup is shown in Fig. 1. The pump laser is a multi-mode 
fiber coupled diode laser emitting at 976 nm with the maximum output power of 50 W, whose 
core diameter is 105 µm. In order to realize high-power Kerr-lens mode-locking, a Kerr 
medium at the Brewster’s angle was inserted in the cavity which is similar with the setup in 
our previous work [8]. However, several improvements are implemented here: firstly, a 6-mm 
long c-cut 5 at. % doped Yb:CALYO crystal with anti-reflection coating was used to replace 
the original 2-mm long, 8 at.% doped, uncoated laser crystal. The pump absorption efficiency 
of this crystal without lasing is 91%. To move the heat accumulation and maintain a stable 
temperature, the gain crystal was wrapped in indium foil and mounted on heat sink kept at 13 
°C. Secondly, we optimized the mode-matching between the pump and laser, so that no hard 
aperture was needed to realize stable KLM operation. Last but not least, different kinds of 
Kerr medium not only quartz but also CaF2 were explored. In addition, three different output 
couplers (OCs) (2.5%, 5%, 15%) were used in our experiment, which was mounted on a 
translation stage to start up mode-locking. The dispersion compensation was achieved by 
using different combinations of several Gires-Tournois interferometer mirrors (GTIs) inside 
the cavity, with total group delay dispersion (GDD) varies from –1850 fs2 to –3300 fs2. And 
no extra-cavity pulse compression was employed. DM was a dichroic mirror with high 
reflective for 1 μm laser and high transmittance for pump. The total length of the cavity was 
about 3 m which corresponds to a repetition rate of 50 MHz. 

3. Results and discussion 

We firstly characterized the output performances with different output couplers (OCs) using a 
2-mm thick quartz as the Kerr medium. With placing the quartz at the Brewster’s angle near 
the center between the M3 and M4, continuous-wave (CW) oscillation started by aligning the 
laser cavity. For different OCs of 2.5%, 5% and 15%, the maximum CW output powers were 
3 W, 6 W and 7.8 W, respectively. The corresponding slope efficiencies were 11.1%, 17.6% 
and 22.9%, respectively. Then, after finely tuning the position of M4 and the quartz in the 
cavity, KLM operation was easily realized by fast moving the translation stage of the OC. For 
each OC, the pulse duration was optimized by fine tuning of the positions of the quartz to 
adjust the intra-cavity nonlinear phase shift and by managing the negative intra-cavity GDD. 
The corresponding spectra as well as auto-correlation traces are shown in Figs. 2(a) and 2(b), 
which were measured by commercial optical spectrum analyzer (AvaSpec-ULS2048, 
Avantes) and intensity auto-correlator (APE PulseCheck USB), respectively. For 2.5% OC, 
the central wavelength at CW operation was at 1060 nm and shifted to 1041 nm once mode 
locked. With a total amount of −3300 fs2 GDD introduced in the cavity by GTIs, 1.5-W KLM 
operation was realized. The spectral bandwidth of the spectrum was 11.8 nm which supported 
a Fourier-limited pulse duration of 96 fs. The FWHM bandwidth of the autocorrelation trace 
was about 153 fs, corresponding to 99-fs pulse duration if a sech2-pulse shape was assumed. 
This corresponds to a pulse energy of 30 nJ and a peak power of 270 kW. It is worth to notice 
that the mode-locking has a Q-switch envelope, which can also tell from the spikes on the 
spectrum and background on the auto-correlation trace. 
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Fig. 2. (a) Mode-locked Spectra for 2.5%, 5% and 15% OCs with optimal dispersion 
management. (b) Intensity autocorrelation traces for the corresponding pulses, the sech2-shape 
fits are shown as solid curves. (c) Mode-locked pulses train trace with 5% OC for 20 ns/div 
and 2µs/div, respectively. 

When using 5% OC, the central wavelength at CW operation was at 1054 nm and shifted 
to 1052 nm with bandwidth of 18.2 nm at the optimal KLM operation with −2900 fs2 GDD 
from GTIs in the cavity. The corresponding auto-correlation trace indicates a pulse duration 
of 70 fs if a sech2 pulse shape assumed. The average power in this case was 2.5 W, 
corresponding to the single pulse energy of 50 nJ and a peak power of 0.63 MW. For 15% 
OC, the optimal KLM operation was obtained with the GTIs providing −2600 fs2 GDD. The 
central wavelength was 1047 nm with a FWHM bandwidth of 15.4 nm, which corresponding 
to 75-fs transform limited pulse duration. The corresponding auto-correlation trace had a 
duration at half maximum of 121 fs, results in a pulse duration of 79 fs assuming a sech2 
pulse shape, which is very close to the transform limited pulse duration. The average power in 
this case was up to 5.4 W, corresponding to the single pulse energy of 108 nJ and the peak 
power of 1.2 MW, respectively. For the mode-locking with 5% and 15% OCs, they were 
getting much more stable. As shown in Fig. 2(c), the pulse train of KLM operation with 5% 
OC was recorded with an oscilloscope with 500 MHz bandwidth, no evidences of Q-switch 
was observed and the auto-correlation trace in 50 ps time span also shows only one single 
peak, meaning no multi-pulses operation. 

 

Fig. 3. (a) Laser spectrum of the KLM pulses from the Yb:CYA laser Using CaF2 as Kerr 
medium. (b) Intensity autocorrelation traces of the pulses, the sech2-shape fits are shown as red 
solid curves. 

Besides using quartz which has high nonlinear refractive index as Kerr medium, we also 
investigated the behavior of using a lower nonlinearity Kerr medium of CaF2 with 2-mm 
thickness. For this case, the maximum CW output power was about 8 W with central 
wavelength of 1060 nm using 15% OC. By optimizing the position of the CaF2 in the cavity 
and utilizing a suitable value of round-trip dispersion of −2900 fs2, as short as 59 fs pulses 
with as high as 6.2 W average power were directly generated from the oscillator. The mode-
locked optical spectrum was centered at 1047 nm with a bandwidth of 17 nm as shown in Fig. 
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3(a). Via Fourier transform with zero chirp, the transform-limited pulse duration is 50 fs. The 
corresponding intensity autocorrelation trace was shown in Fig. 3(b). The FWHM bandwidth 
of the autocorrelation trace was about 91 fs, corresponding to 59 fs pulse duration if a sech2 
pulse shape was assumed, which was close to the Fourier limited pulse duration. The near-
field beam profile of the KLM pulses as shown inserted in Fig. 3(a) was a little elliptical 
because of the astigmatism origin from the four folded concave mirrors. The beam radius 
along its major and minor axises were 0.63 mm and 0.61 mm, respectively. 

To verify the stability of the mode-locking operation, we measured the radio frequency 
(RF) spectrum using a commercial RF spectrum analyzer (Agilent 4407B). The signal was 
recorded in a frequency window of 4 MHz with 1 kHz resolution bandwidth (RBW) and 0.6 
GHz frequency span with 100 kHz RBW, respectively, as described in Figs. 4(a) and 4(b). 
The RF spectrum of the fundamental harmonic at 50 MHz had a signal-to-noise ratio of about 
83 dBc. No obvious side peaks of the higher orders harmonics were observed, which indicates 
that the KLM operation was running stably without Q switch instability. The fluctuation of 
the harmonics peaks in Fig. 4(b) might be originated from the limited sampling rate of the RF 
spectrum analyzer. 

 

Fig. 4. Radio frequency (RF) spectra at: (a) the fundamental beat note with the resolution 
bandwidth (RBW) of 1 kHz, and (b) 0.6 GHz wide span range with 100 kHz RBW. 

The results in this work were summarized in Fig. 5. As Kerr medium, CaF2 has a better 
performance than quartz in both pulse duration and average output power during our 
experiment, which is due to the less nonlinear phase. The KLM operations were easily started 
and able to last hours once been realized. No evidences of saturation effects or thermal 
degradation were observed. Our results are compared with other Yb-doped lasers generating 
sub-100 fs pulses with >5 W output power with both bulk and thin-disk geometries in Fig. 6, 
which was previously only achieved from Yb:Lu2O3 [28,29], Yb:CALGO [1,30] and 
Yb:LuScO3 [31] crystals. It can be seen that there is no previous work reporting on generating 
pulses with >6 W average power as well as <60 fs pulse duration. In addition, for the region 
with >100 nJ pulse energy or >1 MW peak power with sub-100 fs pulse duration, there were 
only results based on Yb:CALGO bulk laser as well as Yb:Lu2O3 thin-disk laser before. 
Although, the TDL has the advantage in thermal management, it has also more complex 
pumping system. In this work, we reported comparable results from the Yb:CALYO crystal, 
with up to 1.85-MW peak power, which shows the advantages in high-power sub-100 fs 
pulses generation of such Yb-doped calcium aluminate crystals. It will push people to develop 
and investigate new materials belongs to this family for better performances in ultra-fast, 
ultra-intense lasers. 
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Fig. 5. Output power and pulse energy for different OCs and Kerr medium versus pump power. 

 

Fig. 6. Comparison of the (a) average power, (b) peak power and (c) single pulse energy with 
other Yb-based solid-state lasers generating sub-100 fs pulses with >5 W output power 
[1,3,28–31].TDL: thin disk laser. 

4. Conclusion 

In conclusion, we have studied on the output performances from a diode-pumped high power 
KLM Yb:CALYO laser with different Kerr-medium. When using a 2-mm thick quartz, the 
KLM Yb:CALYO laser directly produced 79 fs pulses with 5.4 W of average output power 
with 15% OC and 70 fs pulses with 2.5 W of average power with 5% OC. When using a CaF2 
crystal as the Kerr medium, as short as 59 fs pulses with as high as high as 6.2 W average 
power were directly generated from the oscillator, which is the highest average power for the 
sub-60 fs Yb-doped solid-state lasers. The repetition rate of the KLM Yb:CALYO laser was 
50 MHz, resulting in the maximum of 124-nJ single pulse energy and 1.85-MW peak power, 
which is also the highest peak power ever achieved from any sub-100 fs Yb-doped bulk 
oscillators. Taking into consideration of high nonlinear reflective index of Yb:CALYO 
crystal, diode-pumped Kerr-lens mode-locked oscillator with dual-crystal and dual-confocal 
cavity aiming higher output power with sub-100-fs pulse duration is under implement. 
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