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Abstract  The characteristics of hot electrons produced by p-polarized femtosecond 
laser-solid interactions are studied. The experimental results show that the outgoing 
electrons are mainly emitted in three directions: along the target surface, the normal 
direction and the laser backward direction. The electrons flowing along the target surface 
are due to the confinement of the electrostatic field and the surface magnetic field, while 
the electrons in the normal direction due to the resonant absorption. 
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1  Introduction 

Hot electrons produced by sub-picosecond laser-solid interactions have been widely 
investigated for their potential applications in science and industry. Collimated electron 
beams in the target normal direction and the laser specular direction have been observed 
under the non-relativistic laser conditions[1―4]. In the relativistic regime, hot electron 
bunches with maximum energy of tens of MeV are observed in the target normal 
direction and the laser propagation direction during the laser-solid interactions[5―8]. In the 
sub-relativistic regime, the production of the hot electrons is quite complex because of 
the competition between various acceleration mechanisms. Further investigations on the 
behaviors of the hot electrons in this regime are necessary to be done to clarify the 
underlying physics. 

In this paper, we study the angular distributions and the energy spectra of hot electrons 
in the femtosecond laser-solid interactions in the sub-relativistic regime. It is found that 
the ejected electrons are mainly emitted in three directions: along the target surface 
direction, the normal direction and the laser backward direction. As far as we know, 
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the observation of the fast electron jet along the target surface has not been published. 
The number and temperature of this electron bunch are comparable or even larger than 
the other two electron bunches. We believe that the electrons flowing along the target 
surface are formed by the confinement of the electrostatic field and the static magnetic 
field generated around the target surface, and the electrons in the normal direction are 
mainly due to the resonant absorption. 

2  Experimental setup 

The experiments were carried out on the home-made 20 TW Ti-sapphire laser system 
(XL-II) based on chirped pulse amplification technique. The laser system is capable of 
delivering up to 650 mJ energy in 30 fs, with a repetition rate of 10 Hz. The contrast ratio 
of the laser pulses was measured to be ~1:10−5 by a third-order auto-correlator. Fig. 1 
shows the experimental setup. 

 

 
Fig. 1.  Schematic experiment setup. 

 
The p-polarized laser beam was focused with an f/3.6 off-axis parabolic mirror onto a 

3-mm-thick aluminum target at an incident angle of 45°. The focal spot size was 
monitored with an X-ray pinhole camera right above the target normal direction. Fig. 2 
shows an X-ray image and the intensity profile of the laser focus measured with a 
10-μm-diameter pinhole. The FWHM of the focus was about 15 μm. In order to reduce 
the influence of the amplified spontaneous emission (ASE) pedestal on the laser-solid 
interactions, the laser intensity was controlled at 6×1017―8×1017 W/cm2. 

The LiF (Mg, Cu, P) thermo-luminescence dosimeters (TLD) were used to measure 
the angular distributions of hot electrons. They were mounted on a 6-cm-radius 
aluminum loop covering 120° in the incident plane. The angular resolution was 4°. The 
LiF detectors were coated with a 22-μm-thick aluminum filter that blocked electrons with 
energy less than 50 keV. Two electron spectrometers were installed in the incident plane 
to measure the energy spectra of the hot electrons. The one with a magnetic field of 1000 
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Gauss was placed at 13° with respect to the front target surface. The collection solid 
angle of this spectrometer was 2.4×10−4 sr. The other spectrometer with 2000 Gs magnets 
was put 35° from the target normal. The solid angle was 3.6×10−4 sr. This spectrometer 
can measure electrons with energy less than 5 MeV. The absolutely calibrated image 
plates (IP)[9] coupled with the spectrometers were used as detectors . 

 
Fig. 2.  An X-ray image and the intensity profile of the laser focus measured by the X-ray pinhole camera. 

3  Results and discussions 

Fig. 3 shows a typical angular distribution of fast electrons when the p-polarized laser 
was focused onto the aluminum solid target with an incident angle of 45°. The laser 
intensity was 6×1017 W/cm2. One can see that the hot electrons are mainly emitted in 
three directions: along the target surface, the normal direction, and between the laser axis 
and the normal direction (hereafter referred to as laser backward direction). The intensity 
of the hot electrons flowing along the target surface is comparable or even larger than the 
other two bunches of electrons. 

 
Fig. 3.  Angular distribution of outgoing electrons with energy larger than 50 keV recorded by the TLD arrays. 
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The emission characteristics of the hot electrons in the laser plasma interactions 
depend on the laser intensity[10], polarization[1], the density scale length of the plasma[8,11], 
etc. In our experiments, the p-polarized laser was focused on the solid target with an 
intensity of 6×1017 W/cm2. According to the contrast ratio of the laser beam (1:105), the 
intensity of the ASE can reach 1012 W/cm2, which is sufficiently high enough to form a 
preplasma in front of the solid target before the main pulse arrives. According to the 1-D 
hydrodynamic simulations under the similar laser condition[11], the density scale length of 
the preplasma is about L＝1−2λ. Under such plasma conditions, the mechanism of 
resonant absorption[12,13] becomes the dominant acceleration mechanism. The incident 
laser beam can excite large-amplitude electron plasma waves at the reflection plane, 
which accelerate the electrons in the density gradient direction. This may lead to the fast 
electron emission in the target normal direction. 

Fig. 4 shows the energy distribution measured by the magnetic spectrometer in the 
direction 35° from the target normal. The energy spectrum shows a quasi-Maxwellian 
distribution. By fitting the curve with a Boltzmann distribution, we infer that the effective 
temperature of the hot electrons is about 300 keV. 

 
Fig. 4.  Energy distribution of hot electrons in the direction 35° away from the normal direction. 

The hot electron jet along the target surface may be caused by the confinement of the 
static magnetic field and the electrostatic field along the target surface. When an ultra- 
intense laser pulse irradiates obliquely on the solid target, on one hand, some electrons 
will be dragged into the vacuum by the laser electric field, resulting in a separated 
electric field in front of the target surface. Sentoku’s simulations showed that the 
outgoing hot electrons can also induce megagauss magnetic field[14]. On the other hand, 
some electrons are accelerated into the target due to J×B heating[15], forming a current in 
the laser propagation direction. A background cold electron return current will be induced 
to maintain the charge neutrality in the target. Therefore the outgoing electron bunch and 
the return current form a surface magnetic field perpendicular to the incident plane. 
When the magnetic field component along the target surface is strong enough, it will 
reflect a significant fraction of fast electrons initially moving in the laser propagation 
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direction into the vacuum. The reflected electrons and the initially outgoing electrons will 
be dragged back into the target again by the charge separation field. Thus the hot 
electrons are confined by the surface magnetic field and the sheath electric field and flow 
along the target surface. The surface current in turn enhances the surface magnetic field. 
In this way, the positive feedback is maintained and large quantities of electrons are 
directed to the target surface direction. This process has been analyzed by Nakamura in 
detail[16]. 

Fig. 5 shows the energy distribution of hot electrons measured at 13° relative to the 
front target surface in the incident plane. The effective temperature is about 400 keV after 
fitting the spectrum by a Boltzmann distribution. 

An emission peak of hot electrons in the laser backward direction is also observed in 
our experiments. Similar electron peak has also been observed using an s-polarized laser 
pulse[17]. Andreev[18] suggests that a periodic electron density modulation will reflect the 
laser beam in the backward direction, which can accelerate the electrons in the backward 
direction. Further experimental and theoretical work is needed to find out the generation 
mechanisms of the backward hot electrons. 

 
Fig. 5.  Energy distribution of hot electrons in the direction about 13° from the target surface. 

4  Conclusion 

The characteristics of hot electrons produced by p-polarized femtosecond laser-solid 
interactions are studied in the sub-relativistic regime. The experimental results show that 
there are mainly three emission peaks of the hot electrons: along the target surface, the 
normal direction and the laser backward direction. We believe that the electrons emitted 
along the target surface are formed by the confinement of the electrostatic field and the 
surface magnetic field, which originates from the ingoing electrons accelerated by the 
laser ponderomotive force and the outgoing electrons ejected from the front surface. The 
electrons in the normal direction are mainly generated by the resonant absorption 
mechanism. 
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