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Abstract
We report on an experimental study of a dark soliton and bright–dark soliton pair, harmonically
mode-locked, all normal dispersion (ANDi) ytterbium fiber laser with a long cavity length.
Mode-locked output up to the fourth harmonic with respect to the fundamental repetition rate has
been realized. To the best of our knowledge, this the first such demonstration so far in ANDi
mode-locked ytterbium fiber lasers with a birefringence filter as spectral modulation component.
The experimentally recorded mode-locked spectrum shows that the generation of a dark soliton
is always accompanied by strong continuous-wave emission. Furthermore, by changing the
pump power, the fundamental bright–dark soliton pair mode-locked operation can be evolved
into the state of the second order bright soliton coexisting with the fundamental dark soliton.
Additionally, bright–dark soliton pairs, which are symmetric relative to the vertical coordinate,
can be interconverted by rotating waveplates in a fixed maximum pump power condition. The
generation of the dark pulse is probably due to the large normal dispersion introduced in the ring
cavity except for the nonlinearity.

Keywords: all normal dispersion, dark soliton mode-locking, harmonic mode-locking

(Some figures may appear in colour only in the online journal)

1. Introduction

With the development of laser technology, mode-locked fiber
lasers have advanced from the stages of negative dispersion
[1] and net positive dispersion [2, 3] to all normal dispersion
(ANDi) fiber lasers [4]. In contrast to other laser oscillators,
mode-locked ANDi ytterbium fiber lasers have been subject
to significant progress in both power scaling and energy
improvement [5, 6] and thus attracted greater attention. Apart
from dissipative pulse shaping mechanism assisted mode-
locking, various novel experimental results have been repor-
ted in ANDi fiber lasers, such as multi-wavelength dissipative
soliton generation [7] and dissipative soliton resonance mode-
locked operation [8, 9]. For the references cited above [1–9],
all of these can be classified as bright soliton mode-locking in

some sense. However, dark soliton mode-locked operation
has also been realized in Er- and Yb-doped ANDi fiber lasers
in the past few years [10, 11].

In contrast to the conventional bright soliton, a dark
soliton is concomitant with an intensity dip in the uniform
continuous-wave background and can form in the normal
group velocity dispersion (GVD) regime of fibers [12]. For a
dark soliton with normal GVD, due to reversed self-phase
modulation (SPM), the combined effects of normal GVD and
negative SPM make the dark pulse propagate with its original
profile without any pulse broadening [13]. In this paper, we
experimentally explore the generation of harmonically mode-
locked dark pulses and bright–dark soliton pairs and the
transformation between symmetric bright–dark soliton pairs
in an ANDi ytterbium fiber laser with a birefringent plate as
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spectral modulation component. On the one hand this is of
great significance for further fundamental studies of physical
phenomena in ANDi fiber lasers and on the other hand it is of
great value with respect to applications in the field of optical
communication.

2. Experiment and discussion

The harmonically mode-locked dark soliton and bright–dark
soliton pair ANDi ytterbium fiber laser is schematically
shown in figure 1.

A pump laser with 611 mW maximum output power is
used to pump the 40 cm long ytterbium doped gain fiber. A
wavelength division multiplexer (WDM) ensures stable laser
oscillation. A birefringent plate at Brewster’s angle, located
between the polarization beam splitter (PBS) and polariza-
tion-dependent isolator (PD-ISO), is introduced as a spectral
modulation component with an 8 nm spectral bandwidth.
Based on the dissipative mechanism and nonlinear polariza-
tion rotation (NPR) mode-locked technology, stable mode-
locked operation is possible and the PBS is used as an output
port in the experimental set-up. For stable mode-locked
operation, the fundamental repetition rate is approximately
976 kHz and the GVD introduced into the cavity is approxi-
mately 4.4 ps2.

In continuous-wave operation, the output wavelength is
centered at 1035 nm. By adjusting the orientations of the
waveplates, conventional bright soliton mode-locked opera-
tion can be realized, provided that the proper and the optimum
pump power are both between 60 mW and 100 mW. As the
pump power exceeds 100 mW, self-starting single bright
soliton mode-locked operation is relatively difficult to achieve
due to the accumulation of the nonlinear phase and the
resulting pulse splitting. Figure 2 shows the corresponding
single bright soliton mode-locked spectrum and the pulse
train on an oscilloscope.

Increasing the pump power up to 200 mW, stable dark
soliton mode-locked operation is realized by adjusting the
orientations of the waveplates. Figure 3 shows the dark
soliton mode-locked experimental results. In addition to the
relevant mode-locked spectrum centered at 1047.8 nm, a
continuous-wave spectrum also exists, in accordance with the
reproducible experimental observations in dark soliton mode-
locked operation, as shown in figure 3(a). We conclude that
the generation of the dark pulse related mode-locked opera-
tion in the experiment is a narrow spectral mode-locked state
existing in the continuous-wave background, no matter
whether it is dark soliton or bright–dark soliton pair harmo-
nically mode-locked operation. For both types of operation,
the spectra of both the continuous-wave and mode-locked
laser coexist. However, the spectral intensity of the dark
soliton is either lower or higher than that of continuous-wave
operation. Figure 3(d) shows the linear increase in output
power of the fundamental dark soliton mode-locking with
increasing pump power. By increasing the pump power, the
single dark soliton mode-locked output power boost from
84 mW to 328 mW while mode-locked operation turns out to
be stable without any additional adjustment.

By rotating the orientations of the waveplates and the
birefringence filter under the constant maximum pump power
of 611 mW, the fundamental mode-locked dark soliton pulses
gradually split into higher order harmonically mode-locked
dark solitons and bright–dark soliton pairs as shown in
figures 4 and 5. For the latter types of mode-locked operation,
the characteristics of the output spectra are similar to those of
the single dark soliton mode-locked pulses.

Figure 1. Schematic of the dark soliton related ANDi mode-locked
fiber laser. LD: laser diode; WDM: wavelength division multiplexer;
CO: fiber collimator; PBS: polarization beam splitter; BPF:
birefringent filter; PD-ISO: polarization-dependent isolator.

Figure 2. Single bright soliton mode-locked spectrum (a) and pulse train (b) measured from the output port of the PBS.
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Figure 3. Fundamental dark soliton mode-locked results. (a) Measured mode-locked spectrum at the output port of the PBS. (b) RF spectrum
with 1 kHz resolution. (c) Pulse train on an oscilloscope. (d) Pump power dependence of the output power. TR stands for the cavity round-trip
time period. The inset in (a) shows the output spectrum in continuous-wave operation.

Figure 4.Oscilloscope pulse trains corresponding to the second (a), third (b) and fourth (c) order harmonically mode-locked dark soliton operation.
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Increasing the pump power to 611 mW, the fundamental
bright–dark soliton pair mode-locked operation, which cor-
responds to a pump power of less than 418 mW, gradually
evolves into the second order bright soliton mode-locked
operation coexiting with the fundamental dark soliton mode-

locking and vice versa. To the best of our knowledge, the
mentioned mode-locked operation is realized for the first time
in an ANDi fiber laser. The formation process of the second
order harmonically mode-locked bright soliton coexisting
with the fundamental dark pulse resulting from bright–dark
soliton pair mode-locked operation is shown in figure 6.

Figure 5. (a) Fundamental bright–dark soliton pair mode-locked oscilloscope pulse train. (b), (c), and (d) show the second, third and fourth
order harmonically mode-locked bright–dark soliton pair concomitant mode-locked pulse trains, respectively.

Figure 6. Formation process of the second order harmonically mode-
locked bright soliton coexisting with the fundamental dark soliton
pulse, triggered by increasing the pump power.

Figure 7. Measured spectrum at the output port of the PBS
corresponding to the mode-locked state of figure 6.
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During the entire evolution, the mode-locked spectrum does
not change, as shown in figure 7.

Figure 8 shows the evolution between both different
bright–dark soliton pair mode-locked operations symmetrical
relative to the vertical coordinate by accurately adjusting the
waveplates under the pump power of 611mW. The upper right
bright soliton, as shown in figure 8(a), gradually moves back-
wards and combines with the following bottom left dark soliton,
as shown in figures 8(b) and (c), and a final symmetric relative
to the vertical coordinate bright–dark soliton pair mode-locked
state occurs, as shown in figure 8(d). Namely, the state of the
mode-locked bright–dark soliton can be tunable from the initial
modes of the bottom left dark pulse and upper right bright pulse
to that of the upper left bright pulse and bottom right dark pulse.
The reversible tuning also works.

These new types of mode-locked operation demonstrated
in an ANDi fiber laser with a birefringence filter as modula-
tion component have remarkable value for both physical
research and practical applications. Based on the experimental
observations, we attribute the occurrence of dark pulse rele-
vant mode-locked types of operation to the large amount of
normal dispersion and accumulated nonlinearity.

3. Conclusion

In conclusion, various dark soliton related types of mode-
locked operation have been realized in a NPR based long
cavity ANDi fiber laser with a birefringence filter as spectral
modulation component. Single dark soliton mode-locked
operation, harmonically mode-locked dark soliton and bright–
dark soliton pair operation, a second order harmonically
mode-locked bright soliton coexisting with the fundamental
dark pulse and interconversion between symmetric bright–
dark soliton pairs have been discussed in detail. The

demonstration of various dark soliton related mode-locked
operations can both improve the understanding of ANDi
dissipative soliton mode-locking and motivate the exploration
of novel experimental phenomena in order to promote the
further development of fundamental science and laser
technology.
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