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Observation of stimulated 
emission from a single Fe-doped 
AlN triangular fiber at room 
temperature
Liangbao Jiang1, Shifeng Jin1, Wenjun Wang1, Sibin Zuo1, Zhilin Li1, Shunchong Wang1, 
Kaixing Zhu1, Zhiyi Wei2 & Xiaolong Chen1,3

Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in 
fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be 
achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-
doped single crystal AlN fibers with a diameter of 20–50 μm and a length of 0.5–1 mm were preparated 
successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence 
lifetime (2.5 ms) were observed in the fibers by a 532nm laser excitation at room temperature. The 
high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may 
possess potential advantages over traditional fiber lasers in enhancing power output and extending 
laser wavelengths from infrared to visible regime.

Fiber lasers are a class of light sources that exhibit a number of advantages in terms of output power, compactness, 
and high quality of light beams, and find more and more applications in research, industry and therapeutics as 
well1. The last decades are seeing a dramatic rise in output power from a few watts2 in the early 1990s to 30 kW in 
20143. The success of the fiber lasers is due in part to the fiber’s geometry, which facilitates the dissipations of heat 
generation in the fiber core and the efficient enhancement of the energy conversion by cladding-pumping. The 
gain media where stimulated emission of photons occurs are the rare earths doped silica, germanium oxide, and 
telluride oxide glasses. Further increase in power output is often retarded by mode instability4 and non-linear effects 
to some extents. In comparison, semiconductor lasers are another class of light sources in which the stimulated 
emission of photons are released either by an electron-hole plasma process or by an excitonic recombination. Lasing 
actions have been achieved in many single semiconductor nanowires, such as CdS5, ZnO6,7, GaN8, and GaAs9 
with low pump thresholds. Though these semiconductor materials have better thermal conductivity than glasses, 
the semiconductors fiber lasers in general have relatively higher noises and lower gains. In this communication, 
we demonstrate that the simulated emission of photons can be achieved in Fe-doped AlN (Fe:AlN) fibers, which 
combines the advanges of high efficient transition of electrons in solid state lasers and the high thermal conductivity 
in wide band-gap semiconductor AlN. Our results may provide a route for further development of fiber lasers with 
higher power outputs and extension of fiber laser wavelengths from infrared to visible light.

AlN is known as a semiconductor with a wide direct band-gap ~6.2 eV@room temperature (RT)10, high ther-
mal conductivity 220–320 W m−1 K−1 @RT11–14, and chemical inertness, easy doping and environmental friendli-
ness. The combination of these properties makes it an excellent candidate for fabricating deep-UV optoelectronic 
and high-power, high-frequency electronic devices. For instance, Taniyasu and coworkers15 successfully real-
ized the shortest wavelength of luminescence at 210 nm at room temperature from the AlN p-i-n homojunction 
light-emitting diodes. Recently AlN-based laser diodes have also received intensive research16–20. Apart from the 
aforementioned properties, AlN crystallizes in a wurtzite structure and exhibits a strong crystal field. The atomic 
energy levels of some transition metals, if doped, are expected to split in AlN, just as the case with rare earths in 
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garnets, YVO4 and silica. A suitable span between energy levels might be built up, which can be utilized to real-
ize the spontaneous or stimulated photon emissions. In fact, the photoluminescence (PL) in Cu, Mn, Cr, Ti, or 
Ni-doped AlN21–24 has already been observed. Another aspect deserves being mentioned is that AlN is transparent 
to a wide wavelength of light from ultraviolet to infrared and exhibits very high refractive index ~2.1525. So, in 
the context of fiber laser, AlN is an attractive material for the gain medium, which may help further increase the 
power output. However, AlN as a fiber used for fiber lasers has not been reported to date.

The Fe:AlN fibers were grown by vapor-solid process in an induction heating furnace24. The detailed description 
of growth and characterization of Fe:AlN fibers can be found in the supporting information.

The powder X-ray diffraction patterns in Fig. 1a show characteristic peaks with single phase as wurtzite AlN 
for 0.13 at.% and 0.28 at.% Fe-doped AlN fibers. No other impure peaks were detected within the instrumental 
resolution, confirming the Fe-doping did not destroy the hexagonal structure of AlN. Figure 1b is the side-view 
image of Fe:AlN fibers with the average length of about 0.5–1 mm. From the SEM image of Fe:AlN fibers as shown 
in the inset of Fig. 1b, it can be seen that the Fe:AlN fibers exhibit triangular profiles with diameters ranging 
from 20 to 50 μ m. Figure 1c shows the typical HRTEM image of the Fe:AlN fibers. The spacing of 2.49 Å between 
adjacent lattice planes corresponds to (002) spacing, indicating [0001] is the growth direction for the Fe:AlN 
fibers. This [0001] growth direction is also confirmed by the result of selected area electron diffraction (SAED) as 
shown in the inset of Fig. 1c. These results establish the quality monocrystalline nature of the Fe:AlN fibers. The 
room temperature excitation and emission spectra of Fe:AlN fibers are shown in Fig. 1d. The excitation spectra 
exhibit a broad band centered at 495 nm which indicates that there is a strong absorption at this wavelength. The 
emission spectrum of Fe:AlN fibers excited at 495 nm shows a broad band centered at about 600 nm, showing that 
Fe:AlN has potential candidate gain medium for fiber lasers considering the difference in emission and excitation 
wavelengths is not wide since the difference, i.e. the quantum defect, determines the surplus heat in lasing action.

Figure 2a is the far-field image of a representative single Fe:AlN fiber. The far-field image Fig. 2b,c show optically 
pumped (325 nm, He-Cd laser, 7 mW) emission from a single Fe:AlN fiber (0.13 at.% Fe and 0.28 at.% Fe, respec-
tively). The area I in Fig. 2b,c is the in-situ PL under laser excitation, most of which was guided along the fibers and 
emitted at the fiber end. The orange emission as shown in Fig. 2b,c is very consistent with the emission wavelength 
measured by Xe lamp as shown in Fig. 1d. The localization of bright emission at the end of the fibers (area II) with 
relatively weak emission in other regions suggests that strong waveguiding behavior8,26. Further investigations reveal 
that all the obtained Fe:AlN fibers have a similar waveguide effect, suggesting that the obtained Fe:AlN fibers can 
act as good optical waveguide media. These observations demonstrate that they are suitable to realize lasing action.

Figure 1. (a) XRD pattern of undoped and Fe-doped AlN fibers. (b) side view SEM image of Fe:AlN fibers. 
Inset shows the enlargement of several representative Fe:AlN fibers. (c) HRTEM image of an individual Fe:AlN 
fibers and its corresponding selected area electron diffraction pattern (inset). (d) Excitation and emission 
spectra of Fe:AlN fibers at room temperature (using a 150 W Xe lamp as the excitation source).
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Figure 3 shows the intensity-dependent PL spectra of a representative 0.28 at.% Fe-doped AlN fiber excited by 
a 532 nm laser (Nd:YAG) at room temperature. At low excitation intensities, a broad weak emission band appears 
at about 607 nm which is a little shift compared with the emission at about 600 nm excited by the Xe lamp as shown 
in Fig. 1d. However, with increasing excitation power density to exceed the threshold (2 mW/μ m2), a super nar-
row emission of a single lasing mode (peak at about 607 nm and FWHM ~0.2 nm) occurs. Above the threshold, 
the integrated emission intensity increases rapidly with the pump power density as shown in Fig. 3 right inset. 
Apparently, the increment of emission intensity with the excitation power density demonstrates that 0.13 at.% 
Fe-doped AlN fibers can also realize stimulated emission under a higher intensity excitation, with a threshold power 
density of around 4.5 mW/μ m2. However, For 0.13 at.% Fe-doped AlN fibers, the threshold (4.5 mW/μ m2) is larger 
than 0.28 at.% Fe-doped, but the lasing intensity is lower as shown in Fig. 3 right inset. The different threshold of 
Fe:AlN fibers may mainly be attributed to two aspects. Firstly, the fibers themselves are natural Farby-Perot (F-P) 
cavity to realize stimulated emission or lasing. The threshold of a F-P cavity is inversely proportional to the cavity 
length (L) by Gth ~(2L)−1ln(R1R2)−1, where R1 and R2 are the end facet reflections27. According to this relationship, 
different length and end facet roughness of Fe-doped AlN fibers may cause different thresholds. Secondly, different 
Fe contents in two samples are also responsible for the variation of the threshold28–30. However, we did not observe 
stimulated emission in undoped AlN fibers even the pump power density reached 20 mW/μ m2. This indicates 
that Fe ions play an important role in achieving stimulated emission in AlN. However, in some cases, different 
PL features were observed in fibers doped with similar Fe contents, as shown in Figure S1(b,c). The reason is not 
clear at the moment, but we expect that the different PL feature can be attributed to inhomogeneous dopings in 
AlN fibers. Comparison of the emission intensity at 607 nm of 0.0, 0.13 & 0.28 at.% Fe-doped AlN fibers under 
different pump fluence was summarized in Table 1.

Figure 2. (Left) Schematic of the optically pumped emission from a single Fe:AlN fiber fixing on a wedge-
shape sample holder. A 325 nm laser (purple arrow) pumps the fiber, and the fiber emits orange color light. 
(Right) Far-field image of a representative single Fe:AlN fiber (a), and its corresponding emission images for 
0.13 at.% Fe doped AlN fiber (b), and 0.28 at.% Fe-doped AlN fiber (c).

Figure 3. Intensity-dependent PL spectra of 0.28 at.% Fe-doped AlN fiber (a-e corresponding to the 
pump fluence of 1, 2, 4.5, 9, 20 mW/μm2, respectively). (Left inset) the relevant energy levels of Fe ions (3d5 
electronic configuration); (Right inset) Intensity-dependent PL intensity of 0.0, 0.13 & 0.28 at.% Fe-doped AlN 
fibers.
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In addition, for high-quality fibers, single-, and multimode lasing may be achieved along the crystallographic 
c axis with the two end facets acting as end mirrors forming a F-P cavity. The mode-space Δ λ  could be calculated 
by using the expression31 Δ λ  =  λ 2/2 nL, where L is the laser cavity length, n is the refractive index (2.15), and λ  
is the resonant wavelength (607 nm). For a Fe:AlN fiber with length of 0.5–1 mm, the mode-space between the 
closest longitudinal modes is expected to be 0.09–0.18 nm. The full width at half maximum of the lasing peak is 
0.2 nm as shown in Fig. 3. Therefore, it should exist 1-2 F-P modes for the observed lasing at around 607 nm. This 
calculated value of longitudinal modes is in good agreement with the experimental results as shown in Fig. 3. 
However, there should exist multiple transverse modes considering the diameter of the fiber is ~50 μ m, though 
they are not observed in the present study.

Figure 4 shows the luminescence decay curves of the energy level transition from the Fe:AlN fibers at the 
wavelength of 607 nm. As can be seen, the decay can be well characterized by an exponential function and the 
luminescence lifetimes of about 2.6 ms (0.13 at.%) and 3.1 ms (0.28 at.%) could be obtained by fitting the decay 
curve at room temperature. The long lifetimes manifest the high crystal quality of the fibers. It is worth noting that 
the lifetime in Fe:AlN is much larger than most current laser materials32. For example, the lifetime of Mn3+ doped 
GSGG, YSGG, GGG, YGG, YAG is < 0.5 μ s, 4.7 μ s, 2.7 μ s, 104.4 μ s, 1.11 ms, respectively. Although the mechanism 
of long lifetime remains unclear at this stage, the long luminescence lifetime provide further evidence that Fe:AlN 
may be a promising system for high power fiber lasers.

To our best knowledge, the detailed energy levels of Fe3+ in hexagonal AlN remain unreported. However, the 
detailed energy levels of Fe3+ in GaN may be taken as a reference for analysis because of the similar lattice con-
stant and crystal field between GaN and AlN25. When Al site of AlN was occupied by Fe3+, the impact of the N 
ligand field in the form of a Stark effect cause the d5 configuration of Fe3+ on Al site to split into the ground state 
6A1(S) and the excited states 4T1(G), 4T2(G) and 4E(G) as shown in Fig. 3 left inset33–35. In GaN, the energy between 
4T2(G) and 6A1(S) is about 2.009 eV (617 nm), which is smaller than the stimulated emission at 2.043 eV (607 nm). 
This may be the result of the smaller lattice constant and stronger crystal field of AlN. Therefore, the stimulated 
emission at 607 nm (2.043 eV) may be attributed to the 4T2(G)–6A1(S) transition of Fe3+ (left inset in Fig. 3) even 
though a detailed investigation of energy levels of Fe ion in AlN still needs to be done. In this regard, stimulated 
emission may also be realized in AlN crystal which doped with other transition metals such as Mn, Co and so on.

In summary, the stimulated emission of photons in Fe:AlN fibers was demonstrated. Stimulated emission (peak 
at about 607 nm and FWHM ~0.2 nm) and very long luminescence lifetime (2.5 ms) were first observed in the 
fibers under light excitation at room temperature. The high quality AlN fibers also are good optical waveguides. 
These results suggest that Fe:AlN have potential applications in high power fiber lasers.
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