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Frequency dependence of quantum path interference in
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High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak
second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to
be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders.
This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from
the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order
harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe.
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1. Introduction
High-order harmonic generation (HHG) from the non-

perturbative nonlinear interaction between intense femtosec-
ond laser pulses and atoms or molecules has been proven to
be a reliable coherent source in extreme ultraviolet (XUV) and
soft x-ray spectral regions.[1,2] HHG driven by monochromatic
or bichromatic laser in a collinear geometry has been exten-
sively studied both experimentally[3–6] and theoretically[7–11]

in the past years, the non-collinear HHG has received less
attention, owing to its complex geometry. Nevertheless, the
non-collinear geometry provides a natural way of separating
the high harmonics from the fundamental beam, especially for
the high harmonic radiation output coupling in an enhance-
ment cavity of XUV frequency comb.[12,13] It is also benefi-
cial to better phase matching in HHG.[14] The HHG process
may be well described by the simple three-step model:[15] an
valence electron is firstly tunnel-ionized out of an atom in the
strong laser field into the continuum state, then is accelerated
and brought back to the atom by the laser field, finally re-
combines with the parent nuclei to emit a high energy pho-
ton. Quantum paths of the electrons are usually categorized
by the excursion time in the continuum state, the shortest two
of which are the well-known short and long trajectories. In
a two-color scheme, HHG may be understood as high-order
sum and difference frequency mixing.[16] For instance, when
the fundamental frequency ω1 and the weak second harmonic
ω2 a beam are mixed, a harmonic photon ω is produced by
absorbing (positive number) or emitting (negative number) q1

photons with ω1 and q2 photons with ω2. This gives another
way of determining the quantum paths which are characterized
by the photon number (q1, q2). A combination of q1 photons
and q2 photons, which obeys the transition selection rules con-
tributes to the HHG spectrum.[5] All the contributions from
different photon numbers (q1, q2) of the same frequency ω

overlap spatially in the collinear two-color scheme, thus the
individual quantum path is undistinguishable. The two-color
HHG has been extended to non-collinear geometry by two[17]

and even multiple laser beams.[18] Spatially discrete harmon-
ics have been observed in non-collinear two-color HHG spec-
tra which are explained in terms of the conservations of en-
ergy, momentum, and parity. Different paths (q1, q2) with the
same harmonic frequency ω correspond to different propaga-
tion angles because of the momentum conservation, making
it possible to separate individual quantum path in the space
domain. The spatial separation of non-collinear HHG has
been proposed to isolate single attosecond pulse[19] and study
the orbital angular momentum transferring from fundamental
to HHG.[20] Recently the phase matching effect and interfer-
ence between adjacent paths in non-collinear HHG have been
investigated[21] as a frequency-domain analogy to the early
work concerning the quantum path interferences for trajec-
tories with different excursion times.[22–24] The interference
is explained by the dipole phase difference among harmonics
from different source positions.

In the present paper, we numerically simulate the non-
collinear HHG to provide a clear understanding of the quan-
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tum path interference. The frequency dependence of this in-
terference is identified, which is attributed to the spatially de-
pendent dispersion of the dipole phase of the atom. In our
simulation the single atom response is calculated by solving
time dependent Schrodinger equation (TDSE) in strong field
approximation (SFA)[25] with which a quantum analysis of
the classical three step model is performed. In the SFA, the
excited states and Coulomb field are not taken into account.
The propagation effect in the gas target is ignored and only
a single slice is considered as the HHG source in the calcu-
lation, which is infinitely thin in the propagation dimension
and includes the beam profile in the lateral dimension. The
far-field HHG spectra at a distance of 100 cm are calculated
by the Huygens’ integral of the near-field distribution in Fres-
nel approximation.[26] The driving field is composed of two
Gaussian beams with frequencies ω1 and ω2 crossing with a
small angle θ at the focus of both beams. A schematic of the
simulation geometry is given in Fig. 1.
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Fig. 1. (color online) Schematic illustration of the simulation geometry.
Two driving fields ω1 and ω2 enter the gas target with an angle θ . The
polarization plane of the two parallelly polarized fields is determined by
their wave vectors The propagation angle ϕ is determined by the direction
of the momentum conservation. Dashed blue peak indicates the HHG in
far-field x′ from different paths.

2. Numerical results
The simulation result for a strong fundamental field ω1

(2× 1014 W/cm2, 800-nm wavelength) and a weak second
harmonic ω2 (0.2× 1014 W/cm2, 400-nm wavelength) with a
crossing angle θ = 8.7 mrad is shown in Fig. 2(a). The pulse
duration is 30 fs and the beam waist is 50 µm for both beams.

Only a single slice of neon atoms placed at the focus was
considered. The weak field ω2 gives rise to even order har-
monics as well as the off-axis discrete harmonics as shown in
the spectra. The position of each discrete harmonic is deter-
mined by the conservation rules,[17]ω = q1ω1 +q2ω2,

𝑘q = q1𝑘1 +q2𝑘2,
q1 +q2 = 2N−1,

(1)

where N ∈𝑍.
The propagation angle ϕ = θq2ω2/ω predicted by the

conservation rules is fitted well with our simulated spectra
for orders lower than 25. The non-collinear HHG spectrum

presents a spatial mapping of quantum paths determined by
the photon absorption (emission) numbers (q1, q2). It is possi-
ble to distinguish different (q1, q2) paths for a certain harmonic
frequency ω by their unique propagation angle ϕ .
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Fig. 2. (color online) (a) Far-field spectrum of high-order harmonic radi-
ation generated by driving fields ω1 (2× 1014 W/cm2, 800 nm) and ω2
(0.2×1014 W/cm2, 400 nm) with 50-µm beam waist, 30-fs pulse length,
and at an angle of 8.7 mrad in a slice of neon atoms placed at the focus.
Far-field distributions are plotted as a function of delay for (b) 21st order,
(c) 25th order, and (d) 29th order taken from panel (a).

The angular gap of neighboring quantum paths ∆ϕ =

2θω2/ω is inversely proportional to the harmonic frequency
ω . On the other hand the divergence of the discrete harmonic
increases with frequency increasing.[27] This makes the angu-
lar gap of discrete harmonics relatively large for low orders,
and ensures the contribution of each quantum path to be re-
solvable in harmonic spectrum at far field. When the gap is
comparable to or even smaller than the divergence of the dis-
crete harmonics, the interference of adjacent paths appears. In
Fig. 2(a) a significant deviation from the predicted propagation
angle appears in high orders because the interference becomes
more distinct for paths in higher orders due to their smaller
spacings. The variations of far-field distribution as a function
of the delay between two driving pulses for the 21st, 25th, and
29th order are shown in Figs. 2(b)–2(d). The position of main
peaks in low harmonic orders do not change with delay, while
an overall shift of the peaks with delay is observed in high
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orders(> 25).[21] The adjacent quantum interference is mod-
ulated by the relative phase between the two driving pulses.
There is a transition around 25th order revealing a mixed pat-
tern of Figs. 2(b) and 2(d) where the shift is observed between
the remaining main peaks as shown in Fig. 2(c). This pattern
is formed due to the insufficient overlap in the intermediate
harmonic orders. In the two-color HHG, the far-field diver-
gence of a discrete emission from a particular path is expected
to vary with the delay between the two-color fields.[28] There-
fore a different delay corresponds to a different overlap be-
tween adjacent paths. This effect is especially important for
the intermediate orders because of their insufficient overlap.
The adjacent paths from intermediate orders change between
independence and overlap according to their divergence vary-
ing with delay. Thus the harmonic emission reveals an inter-
mediate pattern between discrete and interference, as shown in
Fig. 2(c).

3. Discussion
The interference between adjacent quantum paths may

be understood in a framework of frequency chirp induced by
the intensity-dependent dipole phase.[29,30] The dipole phase
is given by Φ

q
j (z,r, t) = −α

q
j I(z,r, t),[31,32] where j refers to

short ( j = 1) or long ( j = 2) trajectory contributing to the q-
th harmonics, I(z,r, t) is the intensity envelope of the driving
laser pulse ω1, α j depends on the electron excursion time in
the continuum and its values for short and long trajectories
are quite different. The discussion in this work is restricted
to short trajectories which dominates the harmonic emission
at the parameters used in Fig. 2(a), unless otherwise men-
tioned. The short trajectory is selected by the electron excur-
sion time at a single atom response level. The intensity de-
pendence of the dipole phase results in a curvature of the har-
monic wave front, which is equivalent to a spatial frequency
chirp ∆ f (x) = −∂Φ(x)/∂x induced by the dipole phase. The
divergence of the harmonic in the far-field is broadened by
this curvature. Under the assumption of a Gaussian beam
E(x) = E0 exp(−x2/x2

0), the far-field propagation angle of the
q-th harmonic as a function of near-field radial axis x may be
expressed as[30]

ϕ(x) =
θq2ω2

ω
− 4αxI0

qk1x2
0

exp
(
−2x2

x2
0

)
, (2)

where I0 = E2
0 . The first term on the right-hand in Eq. (2)

originates from the momentum conservation. The second term
deriving from the spatial chirp which broadens the far-field di-
vergence for each quantum path (q1, q2). The explanation of
the interference is illustrated in Fig. 3, which shows the map-
ping from the near-field to the far-field calculated from Eq. (2).
For an individual quantum path (q1, q2), almost one-to-one
relationship is found from the near-field x to the far-field x′

because of the dipole phase-induced curvature of harmonic
wave front. The positive chirp component of (q1, q2) path
and negative chirp component of the adjacent (q′1,q

′
2) path are

overlapped in the shaded area in Fig. 3 where the interference
takes place. The two interference components are separated
by a distance of ∆x on the opposite edge in the near-field. The
separation ∆x gives rise to the interference pattern of adjacent
paths of q-th harmonic, which may be written into the follow-
ing expression:[29]

Sq(x′) = Iq1,q2(x
′)+ Iq′1,q

′
2
(x′)+2

√
Iq1,q2(x′)Iq′1,q

′
2
(x′)

× cos(Φq1,q2(x
′)−Φq′1,q

′
2
(x′)+qk1∆xx′/L). (3)

where x′ is the far-field radial axis, Sq the far-field distribution
of q-th harmonics along x′, L the distance between near- and
far-field, Φq1,q2(x

′) the phase that is a slow varying function
of quantum path (q1, q2) adopted from the phase of the two
driving pulses.
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Fig. 3. (color online) Schematic illustration of the adjacent path inter-
ference. (a) The one-to-one imaging from near-field x to far-field x′ due
to the spatial frequency chirp ∆ f (x) = −∂Φ(x)/∂x, and (b) the corre-
sponding far-field intensity distribution of the adjacent discrete harmonics
((q1,q2) and (q′1,q

′
2)). The shaded area indicates the interference region.

The interference components from two paths are from opposite sides of
the near-field separated by ∆x. The far-field fringe interval is denoted by
∆x′.

The interference fringe interval ∆x′ is mainly determined
by ∆x. Since the HHG distribution usually concentrates in the
central part of the laser beam where the chirp is almost linear,
an approximation of ∆x from the calculation of Eq. (2) may be
written as

∆x =
k1 sinθx2

0
αI0

, (4)

which indicates that the fringe relates to the crossing angle,
beam waist and dipole phase. From Eq. (4) we may easily de-
duce that a larger beam waist or crossing angle will lead to a
larger near-field separation ∆x and correspond to a smaller far-
field fringe interval. When the fringe interval is comparable
to the interval between adjacent paths, the interference pattern
shows a notable overall shift for each of the main peaks (see
Fig. 2(d)). Adjusting the parameters to support a smaller in-
terval, we observe well resolved interference fringes between
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unshifted main peaks (see Fig. 4(a)). The well resolved fringes
contain achievable phase information about the adjacent paths,
but they are more difficult to observe experimentally because
of the weaker intensity than those of the main peaks.
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Fig. 4. (color online) (a) Far-field spectra of high-order harmonic radi-
ation generated by driving fields ω1 (2× 1014 W/cm2, 800 nm) and ω2
(0.2×1014 W/cm2, 400 nm) with 100-µm beam waist, 30-fs pulse length,
and at an angle of 17.5 mrad in a slice of argon at focus. (b) Dipole phase
coefficient α (dots) retrieved from the spectra in panel (a) and calculated
by the saddle point analysis (solid line), in units of 10−14 cm2/W.

The effect of the dipole phase is not so straight forward.
At certain intensity I0, the coefficient α varies with harmonic
order. A plot of α calculated by a saddle point analysis[33] as
a function of harmonic order for short trajectories in the mixed
laser field ω1 and ω2 is shown in Fig. 4(b). The value of α in-
creases monotonically with harmonic order because α is pos-
itively correlated to the excursion time that electrons spend in
the continuum state. Larger harmonic order corresponds to a
longer excursion time for short trajectories for a certain laser
intensity. The increasing of α with harmonic order is partly
responsible for the more obvious interference in high orders
than that in low orders[21] as shown in Figs. 2(b)–2(d) because
larger α implies a larger divergence of individual discrete har-
monic and the better overlapping of neighboring paths. The
interference provides a way of retrieving α through Eqs. (3)
and (4):

α =
qk2

1x2
0 sinθ

2πI0L
∆x′. (5)

In order to improve the accuracy of the retrieval, larger
beam waist 100 µm and crossing angle 17.5 mrad are chosen
to acquire fine interference fringes as shown in Fig. 4(a). The
values of coefficient α calculated for several orders from the
fringes in Fig. 4(a) are denoted by dots in Fig. 4(b), which
are on the same order of magnitudes as the theoretical value
with an overestimate. The result shows that the simple physi-
cal picture given in Fig. 3 is suitable for describing the inter-
ference between adjacent quantum paths in the non-collinear
HHG scheme qualitatively. An accurate theoretical model
is required to provide more precise analysis of the interfer-
ence process. The interference is also affected by driving
laser intensity. For high orders at higher intensity, the spac-
ing between different paths is smaller while the dipole phase
is larger, which leads to a larger divergence of individual path.
Thus the interference pattern for high orders at high intensity
is more or less similar to the long trajectory at low inten-
sity which has weaker main peaks and stronger interference.
Besides the near-field separation ∆x, the interference also de-
pends on the phase difference ∆Φq = Φq1,q2(x

′)−Φq′1,q
′
22(x

′).
The Φq1,q2(x

′) is determined by the phase between the two
driving pulses. For adjacent quantum paths (q1, q2) and
(q1−4, q2 +2) when ω2 = 2ω1, it may be written as

∆Φq = [φq1,q2(x
′)−φq′1,q

′
2
(x′)]+4ψ1−2ψ2 +4ω1∆t, (6)

where φq1,q2(x
′) is adopted from the geometrical phase be-

tween the two driving beams, ψ1 and ψ2 denote the CEPs of
the two pulses respectively, ∆t is the time delay between the
two pulses, and ∆Φq has little effect on the interval of the in-
terference fringe since φq1,q2(x

′) only has a weak dependence
on x′. But a variation of CEP and time delay between the two
pulses determine a shift of the interference fringe. The vari-
ation periods are π/2 for ψ1, π for ψ2 and 0.67 fs for de-
lay respectively, the last of which is consistent with the result
presented in Figs. 2(c) and 2(d). The strong dependence on
CEP and delay implies that stabilized CEP and relative timing
of the driving pulses are necessary for observing the interfer-
ence for the higher order harmonics in experiment, otherwise
the interference will be smeared by the averaging effect of the
driving laser jitter. The single shot experimental spectrum in
Ref. [21] implies a CEP jitter which is prevented to obtain a
well-matched spectrum to the simulation.

The discussion above is also valid for long trajectory
that has larger coefficient α and therefore more complicated
interference pattern. Since short and long trajectories may
be separated experimentally by phase matching[34] or spatial
filtering[35] and theoretically by selecting the electron excur-
sion time, it is reasonable to restrict the discussion to short
trajectory for simplification.

To know the validity of our single slice gas target cal-
culation, We calculate the spectra by a non-adiabatic two-
dimensional propagation model modified in Ref. [36] as
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macroscopic effect plays an important role in HHG.[37] In
the case of non-collinear beams, radial asymmetry assumed in
Ref. [36] is not available. Therefore the two-dimensional grid,
which is in the plane formed by wave vector 𝑘1 and 𝑘2, is
used instead of the three-dimensional grid (see supplementary
information of Ref. [38]). The interaction region is 1 mm–
3 mm long and centered at the beam focus. The gas pressure
in the interaction region is 40 Torr (1 Torr=1.33322×102 Pa).
Other parameters are the same as those in Fig. 2(a). The result
in 1-mm gas target given in Fig. 5 is similar to the single slice
result shown in Fig. 2(a) except for some small differences in
the relative intensity among different quantum paths.
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Fig. 5. (color online) Far-field spectra for (a) 21st, (b) 25th, and (c) 29th
order. The black solid line is extracted from the spectrogram in Fig. 2(a)
without propagation effect included. The propagation effect is taken into
account in 1-mm-thick (red dashed line), 2-mm-thick (green dot-dashed
line), and 3-mm-thick (blue dotted line) gas target centered at the beam
focus with the same parameters used in Fig. 2(a).

The discrete structure for low orders and the interference
pattern for high orders survive after the 1-mm-long propaga-
tion in the gas medium. In 2-mm or longer gas target, the
dominating peaks move towards the difference-frequency side
(q2 < 0). This shift may be explained by the additional ge-
ometrical phase mismatch term induced by the non-collinear
geometry.[21] The sign of additional mismatch term ∆𝑘< =

q2θ(2q2/q− 1)ω/c𝑘q is always opposite to q2, i.e., ∆𝑘< is
negative for sum-frequency HHG (q2 > 0) and it is positive
for difference-frequency HHG (q2 < 0). The negative neutral
atom dispersion plays an important role in a long gas medium
with moderate power,[35] and such a dispersion may be com-
pensated for by additional ∆𝑘< in difference-frequency HHG.
Therefore the difference-frequency HHG is more likely to add
in a long medium, leading to the shift of the dominating peaks.
The result verifies the validity of ignoring the macroscopic ef-
fect in order to achieve a brief and clear physical understand-
ing, but only valid for short medium. Information from the
single atom response is not destroyed by the macroscopic ef-
fect in a gas target as short as 1 mm.[39]

4. Conclusions
In this work, the high-order harmonic radiation produced

by two non-collinear beams with fundamental frequency at
800 nm and its weak second harmonic is numerically studied.
We determine quantum paths by photon absorption (emission)
number (q1, q2) and observe the spatial separation of the paths
in the non-collinear scheme. Moreover, the interference be-
tween the adjacent paths is observed in high orders. The role
of dipole phase in the interference is investigated and the coef-
ficient α is retrieved from the interference fringe. The strong
dependence on the CEP and delay between the driving pulses
is also proven. The results in this work demonstrate the pos-
sibility of extracting the information about the quantum paths
encoded in the interference spectra, which cannot be realized
in a collinear scheme.
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Hänsch T W 2008 Opt. Express. 16 6233
[14] Lu W, Liu T, Yang H, Sun T and Gong Q 2003 Chin. Phys. Lett. 20 848
[15] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[16] Gaarde M B, Antoine P, Persson A, Carré B, L′Huillier A and
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