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Abstract

®

CrossMark

We experimentally demonstrated a wavelength tunable Kerr-lens mode-locked femtosecond
laser based on an Yb:CaGdAlO,4 (Yb:CGA) crystal. The Kerr-lens mode-locked wavelength
tuning range was from 1043.5 to 1076 nm, as broad as 32.5 nm, by slightly tilting the end
mirror. Pulses as short as 60 fs were generated at the central wavelength of 1043.8 nm with
an average output power of 66 mW. By using an output coupler with 1.5% transmittance, the
Kerr-lens mode-locked average output power reached 127 mW with a pulse duration of 81 fs

at a central wavelength of 1049.5 nm.
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1. Introduction

In recent years, compact, efficient and robust diode-pumped
all-solid-state femtosecond lasers in the infrared spectral
region are desired for many scientific researches and indus-
trial applications, such as ultrafast spectroscopy, medical
treatment, and superfine material processing. Laser systems
based on Yb-doped laser materials have proved their potential
for efficient femtosecond lasers, benefiting from the numerous
excellent spectral and thermal characteristics of the Yb-doped
materials. To date, a number of diode-pumped femtosecond
mode-locked lasers have been generated based on various
Yb-doped laser materials [1-13], by using a semiconductor
saturable absorber mirror (SESAM) for passive mode-locking.
Kerr-lens mode-locking (KLM) is a well developed technique
for mode-locking which has been widely used in femtosec-
ond Ti:sapphire laser. For diode-pumped all solid state lasers,
KLM operation is much more difficult mainly due to the low
brightness and bad beam quality of the pump diode laser.
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However, there is big potential for producing much shorter
pulse duration by use of the KLM technique. Up to now, many
research progresses on diode pumped KLM Yb lasers have
been reported with sub-100 fs duration [14-24].

Among the Yb-doped laser materials, Yb:CaGdAlO4
(Yb:CGA) crystal combines remarkable spectral and ther-
mal properties for femtosecond operation. First of all,
because of two surroundings for one crystallographic site for
both Ca%t and Gd** cations, Yb:CGA crystal shows a broad
and flat emission bandwidth. Benefiting from the superior
spectral properties, as short as 47, 40 and 32 fs laser pulses,
respectively, were reported from the mode-locked Yb:CGA
lasers [25-27]. Secondly, the thermal conductivity of the 2
at.% Yb:CGA crystal was measured to be as high as 6.3 and
6.9W m~! K~ ! along the c-axis and a-axis [28], respectively,
which enables high power operation by this crystal. To date,
sub-100 fs pusles with 12.5W average power from a bulked
Yb:CGA oscillator was reported [29]. Femtosecond thin-disk
oscillator based on the Yb:CGA crystal was demonstrated

© 2016 Astro Ltd Printed in the UK
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with an average output power of 28 W and a duration of
300 fs [30]. While the shortest pulse duration achieved from
the Yb:CGA thin-disk laser was 62 fs with 5.1 W of average
output power [31].

Wavelength tunable femtosecond mode-locked lasers have
useful applications in case specific wavelengths are desired.
Besides nonlinear optical parametric processes, for example
synchronously pumped femtosecond OPO, one can accom-
plish it by tuning the wavelength within the gain bandwidth
of the laser medium. Agnesi et al reported wavelength tunable
range across 20nm with 15 mW output power in a SESAM
mode-locked Yb:CGA laser [26]. Ge et al realized wave-
length switchable passively mode-locked Yb:LuAG laser
between 1031 and 1046nm with watt-level output power
[13]. Recently, sub-50 fs 40nm wavelength tunable Yb:CYA
laser was reported pumped by a 400 mW single mode laser
diode [32].

In this work, we report on a Kerr-lens mode-locked
Yb:CGA laser with broad wavelength tunability by simply
adjusting the cavity end mirror. With an output coupler (OC)
of 0.8% transmittance, the wavelength tuning range of the
Kerr-lens mode-locked laser was as broad as 32.5nm from
1043.5 to 1076 nm, the shortest pulse duration was 60 fs at
the central wavelength of 1043.8 nm with an average output
power of 66 mW. When using an OC with larger transmittance
(1.5%), 127 mW average power and 81 fs pulse duration were
obtained.

2. Experimental setup

In our experiment, we used a 8 at.% Yb>"-doped Yb:CGA
crystal as the laser medium, which was 2mm in thickness
and 3 x 3mm? in aperture. The sample was cut along with
the c-axis. To eliminate thermal load, the Yb:CGA crystal
was wrapped with an indium film and placed on a water-
cooled copper heat sink maintained at 12 °C. The uncoated
crystal was arranged at Brewster’s angle in order to reduce
the reflection loss. A 7W high-brightness fiber-coupled diode
laser (Jenoptik, JOLD-7.5-BAFC-105) was used as the pump
source and its emission wavelength was temperature-con-
trolled at 979 nm. The fiber has a core diameter of 50 ym and
a numerical aperture of 0.22. The pump-laser output from the
fiber was coupled into the laser medium by a coupling sys-
tem with a magnification of 0.8. The beam waist was about
21.8 pm measured by the knife-edge method. The laser cav-
ity consisted of two concave mirrors M1 and M2 with radii
of curvature (ROC) of 75mm, a high reflection end mirror
(HR), a pair of Brewster-cutting SF6 prisms (P1 and P2) and a
plane output couple (OC). The overall experimental setup was
shown as figure 1.

3. Experimental results and discussion

Firstly we characterized the Yb:CGA laser medium in contin-
uous-wave (CW) operation, as seen in figure 1. In this case,
prism P1 was moved out of the cavity and the laser was cou-
pled out from OC1. The OCs with different transmittances of

CW.
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Figure 1. Experimental setup of the Kerr-lens mode-locked
Yb:CGA femtosecond laser. LD: fiber-coupled diode laser; M1
and M2: concave mirrors with ROC of 75 mm; HR: high reflection
mirror; P1 and P2: SF6 prisms; OC1, OC2 and OC3: plane output
coupler for (a) continuous-wave, (b) wavelength tuning and (c)
Kerr-lens mode-locking operation.
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Figure 2. (a) CW output power versus the pump power. (b)
Wavelength tuning curves for OCs with different transmittances
under the pump power of 7W.

0.8%, 1.5%, 2.5%, 4.5%, and 10% were used to get CW out-
put. The CW performance of the laser is shown in figure 2(a).
Under the pump power of 7W, a maximum output power of
1.02W was obtained with the 10% OC, corresponding to a
slope efficiency of 25.5%. With a SF6 Brewster prism (P1)
inserted into the output arm of the laser cavity, wavelength
tuning properties were studied by slightly adjusting the end
mirror (HR). The result was shown in figure 2(b). A broadest
wavelength tuning range of 68.5nm (1006-1074.5nm) was
obtained with a 0.8% OC. The broad and smooth wavelength
tuning curve verifies that the Yb:CGA crystal is an excellent
candidate to generate ultrashort femtosecond laser pulses.
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Figure 3. (a) Autocorrelation trace of the shortest pulses (dotted
curve) with a sech? fitting (solid curve). (b) The corresponding
spectrum.
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Figure 4. Wavelength tuning range of the Kerr-lens mode-locked
Yb:CGA laser.

Next we investigated the Kerr-lens mode-locking perfor-
mance of the Yb:CGA laser. To compensate for the normal
dispersion resulted from the Yb:CGA crystal and other dis-
persion inside the cavity, a pair of SF6 prisms was inserted
into the output arm of the laser cavity. The tip-to-tip distance
between the two prisms was 247 mm, introducing a nega-
tive group-delay dispersion of —1400 fs?. The entire cavity
length was about 1.3 m, corresponding to a pulse repetition
rate of 115 MHz. Based on the ABCD matrix formalism, the
beam diameter of the laser mode in the Yb:CGA crystal were
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Figure 5. Pulse duration and output power of the Kerr-lens mode-
locked Yb:CGA laser as a function of the central wavelength.
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Figure 6. (a) Autocorrelation trace of the KLM pulses (dotted
curve) with a sech? fitting (solid curve) for the case of highest
output power. (b) The corresponding spectrum.

estimated to be 39.2 um x 39.6 pm, well matching that of
the pump laser beam. To obtain KLM operation, an OC with
0.8% transmittance was used to enhance the intracavity laser
intensity in the crystal. KLM was initiated by carefully adjust-
ing the position of M2 mirror as well as fastly moving the
end mirror HR. At the proper position, the CW average output
power was decreased to 53 mW and the KLM output power
was 66 mW. We measured the pulse duration by a commercial
intensity autocorrelator (APE: pulseCheck USB). The short-
est pulse width (full width at half maximum, FWHM) of the
autocorrelation trace was about 92 fs. Assuming a sech?-pulse
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shape, the shortest pulse duration was 60 fs, as shown in
figure 3(a). Figure 3(b) shows the corresponding spectrum
measured by an optical spectrum analyzer. The FWHM spec-
tral bandwidth was about 21.5nm at the center wavelength
of 1043.8nm. The corresponding time-bandwidth product of
0.352 was close to the Fourier transform limitation (0.315).
The near-field beam profiles in the CW and Kerr-lens mode-
locked operations were shown in figure 1.

Due to the broad emission bandwidth of the Yb:CGA crys-
tal, we found by slightly varying the position of the M2 mirror
or adjusting the angle of the end mirror HR, the central wave-
length could be continuously tuned while keeping KLM run-
ning. The central wavelength tuning range covers from 1043.5
to 1076 nm, as broad as 32.5nm, as shown in figure 4. Beyond
this wavelength range, KLM could not be stably sustained.
The mode-locked spectral bandwidth at different central
wavelength is typically 12-20nm. While the pulse duration
ranges from 67 to 116 fs, which is decided by the intracav-
ity dispersion compensation. The pulse duration and the aver-
age output power as a function of the central wavelength was
shown as figure 5. The average output power ranges from 83
mW at 1047.5nm to 33 mW at 1076 nm. To the best of our
knowledge, this is the broadest tuning range of a Kerr-lens
mode-locked Yb:CGA laser.

By replacing the OC with a 1.5% one, stable KLM opera-
tion would also be realized. In this case, the pulse duration
became longer while the average output power increased
accordingly. A typical pulse duration of 81 fs was depicted in
figure 6(a). The FWHM spectral bandwidth was 17nm cen-
tered at 1049.5nm. The corresponding time-bandwidth prod-
uct was 0.375. For the pump power of 5.3 W, the maximum
average output power of 127 mW was obtained.

4. Conclusion

In summary, we have reported a broadly wavelength tun-
able Kerr-lens mode-locked femtosecond laser based on
the Yb:CGA crystal. The wavelength tuning range of the
Kerr-lens mode-locked laser was as broad as 32.5nm from
1043.5nm to 1076 nm when an OC with 0.8% transmittance
was employed. To the best of our knowledge, this is the widest
wavelength tuning range of a Kerr-lens mode-locked Yb:CGA
laser. Mode-locked pulses as short as 60 fs at the center wave-
length of 1043.8 nm were obtained. The average output power
was 66 mW under the pump power of SW. When an OC with
1.5% transmittance was used, stable KLLM operation was also
obtained with a maximum average output power of 127 mW
and a pulse duration of 81 fs at 1049.5nm. The experiment
results indicate that the KLM Yb:CGA laser is a promising
candidate for sub-100 fs pulse generation as well as an excel-
lent seed source for a diode-pumped femtosecond amplifica-
tion system.
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