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1. Introduction

Solitons are intrinsically nonlinear and exhibit shape-changing 
collisions, which find immense applications in the all-optical 
logic gates and optical systems [1–6]. Also solitons can be 
used to carry logical information for communication purposes 
[7–10] and can be exploited for quantum computations [11].

The dynamics of solitons (optical pulses) in nonlinear 
optics can be modeled by the perturbed derivative nonlinear 
Schrödinger (DNLS) equation [12]:
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where u(z, t) is the envelope of solitons. t and z account for 
the propagation direction coordinates and time coordinates. 
m1 and m2 present the nonlinear and third-order dispersion 
effects and they are both real constants. For equation  (1), 
when m2  =  0, the equation  is reduced to a completely inte-
grable DNLS equation. The appropriate inverse scattering 
problem has been solved and the one-soliton solution has been 

obtained [13]. By use of Hirota’s method, exact N-soliton 
solutions have been obtained for equation (1) with m2  =  0 [14, 
15]. The DNLS equation with constant potential, as a model 
for the wave propagation on a discrete nonlinear transmission 
line has been considered and some exact soliton and elliptic 
solutions have been constructed [16]. Moreover, the propa-
gation dynamics of EM solitons in a weak ferromagnet have 
been investigated and the collision of EM solitons has been 
established via Hirota’s method [12].

However, the dynamic stable transmission of the soliton 
in nonlinear optics has not been reported. In this paper, we 
will study the dynamic stable transmission of the soliton in 
nonlinear optics. The one-soliton solutions will be obtained. 
By selecting the proper parameters of third-order disper-
sion and a nonlinear coefficient, soliton behaviors will be 
presented.

This paper will be structured as follows. In section  2, 
analytic one-soliton solutions will be obtained. In section 3, 
soliton behaviors will be analyzed and stability analysis will 
be made. Finally, our conclusions will be made in section 4.
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2. Analytic soliton solutions

In order to construct the one-soliton solutions, we perform the 
dependent variable transformation [17–21]
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where h(z, t) is a complex differentiable function and f (z, t) 
is a real one. With the transformation, the resulting bilinear 
forms for equation (1) can be derived as
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Dz and Dt [22] are the Hirota’s bilinear operators, which can 
be defined by

⎜ ⎟
⎛
⎝
⎜

⎞
⎠
⎟ ⎛

⎝
⎞
⎠

⋅

= ∂
∂

− ∂
∂

∂
∂

− ∂
∂

′ ′
′ ′ = =′ ′

D D H F

z z t t
H z t F z t

( )

( , ) ( , )| ,

z
m

t
n

m n

z z t t, 
 

(6)

where m and n are the positive integers, H is the function of 
z and t and F is the function of the formal variables z′ and t′.

To solve bilinear forms (3)–(5), h(z, t) and f (z, t) can 
be expanded with respect to the following power series 
expansions:

ε ε= = +h z t h z t f z t f z t( , ) ( , ),     ( , ) 1 ( , ),1
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where ε is a formal expansion parameter, h1(z, t) and f 2(z, t) are 
the differentiable functions. Substituting expression (7) into 
bilinear forms (3)–(5) and equating coefficients of the same 
powers of ε to zero yield the recursion relations for h1(z, t)  
and f 2(z, t). Then, the analytic one-soliton solutions for equa-
tion (1) can be obtained.

To obtain those soliton solutions, we assume that
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where a1j’s, b1j’s and k1j’s (j  =  1, 2) are the real constants. 
Substituting h(z, t) into bilinear forms (3)–(5) and col-
lecting the coefficient of ε, we get the constraints on the 
parameters:
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Substituting h(z, t) into bilinear forms (3)–(5) and collecting 
the coefficient of ε2, we obtain
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We substitute h1(z, t) and f 2(z, t) into bilinear forms (3)–(5) 
and collect the coefficient of ε3, the coefficients of them are 
equal to zero with a12  =  −1/(2m2). Without loss of general-
ity, we set ε  =  1 and the analytic one-soliton solutions can be 
expressed as
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where θ1 and A are defined in expressions (9) and (10). For 
the purpose of verifying the solution (11), we substitute it into 
equation (1) and solution (11) can satisfy equation (1).

3. Discussion

In expression (11), we assume that k11  =  0.31, k12  =  −1.2, 
k22  =  0.38, a11  =  −0.56, m1  =  0.91 and m2  =  −0.75. The 
soliton propagation can be obtained as shown in figure 1(a). 
Changing those parameters, we can increase the soliton ampli-
tude and adjust the soliton velocity in figure 1(b). Because the 
soliton amplitude is related with A1/ . When the values of a11 
and m1 increase and the value of m2 decreases, which results 

Figure 1. Transmission of the soliton in nonlinear optics. Parameters are: k11  =  0.31, k12  =  −1.2, k22  =  0.38 with (a) a11  =  −0.56, 
m1  =  0.91 and m2  =  −0.65; (b) a11  =  2.0, m1  =  0.88 and m2  =  −0.75.
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in the decreasing of the value of A. Thus, the soliton amplitude 
increases in figure 1(b).

If the third-order dispersion parameter m2 is positive and 
the nonlinear dispersion parameter m1 is negative, the material 
properties will be changed, which will result in changes of the 
propagation direction of solitons in the material. Similarly, the 

soliton amplitude decreases when the value of −m

m a8
1

2 11
2  increases. 

For example, the value of −m

m a8
1

2 11
2  is about 0.28 in figure 2(a), 

but is about 1.03 in figure 2(b). Thus, the soliton amplitude 
in figure 2(a) is bigger than that in figure 2(b). Therefore, we 
can adjust the amplitude and propagation directions of soli-
tons through changing the corresponding parameters. These 
results are helpful in the study of soliton propagation in non-
linear optics.

The bright soliton shown in figure 1(a) is stable with a per-
turbation on m1 and m2. Furthermore, the stability is analyzed 
with embedded white noise as figure 3 shown. The intensity 
of the white noise is 0.1 and the transmission of the soliton is 
stable with some perturbations in the amplitude.

4. Conclusions

Dynamic stable transmission of solitons in nonlinear optics 
have been investigated for the first time in this paper. By 
virtue of Hirota method, analytic one-soliton solution 
(12) for equation  (1) has been obtained. Through chang-
ing the third-order dispersion coefficient m2 and nonlin-
ear coefficient m1, we can adjust the soliton amplitude and 
propagation directions. and the stability analysis for soli-
tons has demonstrated that the transmission of solitons is 
stable in nonlinear optics. Results in this paper are useful 
for studying the soliton characteristics and properties in  
nonlinear optics.
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