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We have experimentally investigated high-order-harmonic generation driven by a few-cycle truncated Bessel
(TB) laser beam which propagates through optical elements of finite aperture sizes. The TB beam was first
investigated by Nisoli et al. [Phys. Rev. Lett. 88, 033902 (2002)], who assumed an infinite size for the optical
elements so they concluded that the phase and intensity of the laser field oscillate dramatically around the laser
focus in space. However, in all real experiments, the optical elements are always finite in size and would further
truncate the TB beam, and so the oscillations would dwindle substantially. In this paper we take the finite size
of the optical elements into account. We find that the further truncated TB beam has two intensity peaks around
the focus. In front of the second peak position the curvatures of the laser phase front and the atomic-dipole phase
front have the same absolute values but opposite signs, so the generated harmonic has a flat wavefront and hence
a minimized angular divergence. In addition, at this position the pump intensity is not much less than its maximal
value. This result is of significant importance in practical applications due to the finite aperture size of all real
optical elements.
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I. INTRODUCTION

Extreme ultraviolet coherence sources based on high-order-
harmonic generation (HHG) has promoted the development of
many research fields, such as studies on collective electron
dynamics [1], coherent diffractive imaging [2], free electron
laser seeding [3], attosecond pulse generation [4], and so
forth. All these applications require good spatial characteristics
of the harmonics, i.e., small angular divergence and energy
concentrated in the center. In general, the small divergence
is beneficial for laser propagation, and central concentration
gives a good focus. These two characteristics usually appear
along with each other.

As is well known, HHG is an extremely nonlinear process.
When a strong femtosecond laser pulse is focused into some
medium such as a noble gas, light is emitted with a photon
energy of typically dozens to hundreds times that of the
pump laser [5,6]. Optimization of the spatial properties of the
harmonics, especially minimization of the angular divergence,
has been investigated over the past two decades. One method
is to utilize the phase matching effect. When the pump laser
delivers a Gaussian beam and the interactive medium is located
behind the laser focus, suitable phase matching would wash out
the harmonics with large emission angles, so only those with
small emitting angles remain [7–9]. However, at this position
the pump intensity is much lower than that at the focus point,
so the efficiency is relatively low, plus it is a waste of laser
energy.

The second method is to reduce the phase change in the
radial direction of the harmonic generation. The total phase of
the qth order harmonic can be written as [10]

φq(r,z) = qφlaser(r,z) + φint(r,z), (1)

where φlaser is the phase of the fundamental laser. φint is the
intensity-dependent atomic-dipole phase and can be expressed
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as φint ≈ αIlaser, where α is the coefficient of the intensity-
dependent atomic-dipole phase and Ilaser is the intensity of the
pump laser. r and z are the coordinates of the radial and laser
propagation directions respectively. Thus the variation of the
harmonic phase depends on the variation of the laser phase
as well as the laser intensity. By using a flat-top fundamental
beam [11,12] and a loose focusing configuration [13] we can
both reduce the variations of the intensity and the laser phase in
the radial direction and contain the harmonic emission within
a small angle. In this method the variation of the two phases
in the radial direction is a disadvantage for the generation of
high-order harmonics with small angular divergence, so we
must try to eliminate the variations.

In this work we do not try to restrict the radial variation of
the two phases but utilize this to flatten the total harmonic phase
front. Under proper conditions the phase fronts of φint and φlaser

bend in opposite directions, so the final harmonic phase front
becomes flat and the harmonic only diverges slightly in the
far field. To achieve this aim a truncated Bessel (TB) beam,
which propagates through the optical elements with a finite
size, is used. Nisoli et al. [14] first analyzed bright collimated
high-order harmonic generation driven by a TB beam. They
found that the TB beam has a truncated Bessel intensity profile
at the output of the hollow fiber and assumed that the optical
elements which the TB beam propagates through are infinite
in size. The TB beam has two intensity peaks near the laser
focus point along the direction of laser propagation. In the
middle between these two peaks the phase and amplitude of
the light field oscillate fast in space. However, in practical
experiments the mirrors and other optical elements such as
the hard aperture are always finite in size and would further
truncate the TB beam, so the fast oscillations would vanish
and the characteristics of the high-order harmonics described
in previous works may be rather different [14–16].

In the following, we first compare the spatial distributions of
three beams: the TB beam where the optical elements are finite
in size and the TB and the Gaussian beams where the optical
elements are infinite in size. There are three characteristics of
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the TB beam that are beneficial for the generation of high-order
harmonics with small angular divergence. The first is that by
putting a medium in front of the second peak intensity point
a large curvature of the laser phase front may be obtained,
which cancels out the curvature of the atomic-dipole phase
front in the opposite direction, flattens the harmonic phase
front, and minimizes the angular divergence of the emitted
harmonic. Second, in this position the light intensity is still
quite high. Third, around the beam focus the curvature of the
harmonic phase front has several extrema that are good for
phase matching. We provide both experimental and numerical
results to verify our analysis.

II. SPATIAL DISTRIBUTION OF THE TRUNCATED
BESSEL BEAM WITH FINITE APERTURE SIZE

A schematic of the optical path of our experiment is shown
in Fig. 1. A laser beam of 25 fs temporal width, 1 mJ energy,
and 1 kHz repetition rate is focused into a fused silica hollow
fiber of inner diameter of 250 μm [17]. The hollow fiber
is differentially pumped [18] with neon gas and emits a TB
beam [14], which is then collimated by a spherical mirror of
1 m focal length, compressed temporally by a set of chirped
mirrors, truncated by a hard aperture of 8 mm radius, and
finally focused by a spherical mirror of 0.5 m focal length into
a gas cell to generate high-order harmonics. The radius of all
the mirrors is 12.7 mm. The typical parameters of the final
pump laser beam are 0.4 mJ and 4–7 fs.

The propagation of the laser beam is assumed to obey the
paraxial wave equation or, equivalently, Huygens integral [19].
For an axial-symmetric lenslike system, the Huygens integral
can be simplified by the ABCD matrix [15,20]. Based on this
method, previous studies [14–16] which neglected the aperture
size of the optical elements gave the spatial distribution of
the TB beam around the focus point as shown in Fig. 2(a),
where we can see that the intensity oscillates dramatically near
the laser focus (z = 0). Below, we use the fast discrete Fourier
transform to calculate the Huygens integral [21]. The spatial
distribution of the laser beam at the exit of the hollow fiber can
be expressed as u(r) = E0J0(2.405r/a) with r < a, where E0

is the on-axis peak amplitude, a = 125 μm is the inner radius,
and J0 is the zeroth-order Bessel function of the first kind. The
light field us1(r) in front of the collimating mirror is calculated
by the Huygens integral, while the field after the collimating

FIG. 1. (Color online) Schematic of optical path in the experi-
mental setup.

FIG. 2. (Color online) Simulated intensity distributions of the TB
beam around the laser focus point for (a) infinite-aperture (IF-A) and
(b) finite-aperture (F-A) optics. Both panels use the same linear color
bar.

mirror can be expressed as us2(r) = us1(r)circle(r)pha(r):
Here circle(r) is the amplitude modulation function, which
equals 1 when r < 12.7 mm and equals 0 when r > 12.7
mm, and pha(r) = exp(−ikr2/2f1) is the phase modulation
function of a lens, with f1 being the focal length of the
collimating mirror and k the wave vector of the pump laser.
By repeating this calculation we obtain the final light field
emitted by the gas cell as shown in Fig. 2(b). Compared with
Fig. 2(a), the intensity distribution in Fig. 2(b) has a very
similar shape but no oscillations. On-axis comparisons are
shown in Figs. 3(a) and 3(b), from which we can see that the
finite and infinite aperture curves have similar envelopes, but
oscillations appear when the aperture size is infinite.

The differences in the simulation results of Figs. 1 and 2
result from the fact that the size of the TB beam is much
larger than the size of any optical element. For comparison,
the Gaussian beam is assumed to have a waist of diameter
125 μm at the exit of the hollow fiber. After arriving at the
front surface of the collimating mirror it has the profile (blue
[gray] dashed line) shown in Fig. 4, where the red (gray) line is
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FIG. 3. (Color online) On-axis (r = 0) intensity (a) and phase (b)
distributions of TB beam around the laser focus. Solid blue (gray)
line: infinite-aperture (IF-A); red (gray) dashed line: finite-aperture
(F-A).
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FIG. 4. (Color online) Amplitude profile of the TB beam (red
[gray] line) and the Gaussian beam (blue [gray] dashed line) at the
front surface of the collimating mirror. The inset is an enlargement
of the outer edge of the TB beam.

the amplitude distribution of the TB beam. Both beams seem to
have a diameter of less than 12 mm, well within the 25.4-mm
diameter of the spherical mirror, which can thus be regarded
as infinite in size. However, if we look at an enlargement of the
wings of the profile, as shown in the inset, beyond x > 20 mm
the Gaussian beam nearly vanishes but the TB beam still has
an amplitude at the level of 10−3. Previous authors assumed
an infinite size for all the optical elements, so these weak
amplitudes were included in their simulations, resulting in the
fast oscillations of Figs. 2(a) and 3 (blue [gray] line). However,
in real experiments all the optical elements have finite size,
so those weak amplitudes located far outside the collimating
mirror should be neglected. Our method takes the finite size
into account and plots the actual light field, which does not
exhibit any fast oscillations near the laser focus, as can be seen
in Figs. 2(b) and 3 (red [gray] dashed line).

III. METHOD: FLATTENING THE PHASE FRONT
CURVATURE OF HIGH-ORDER HARMONICS

The spatial distribution of the TB beam near the laser focus
has been analyzed in the previous section. In this section
we show how to utilize the TB beam to generate high-order
harmonics with minimal angular divergence. In second-order
harmonic (SOH) generation, the pump laser is focused into a
nonlinear crystal. The crystal would emit an SOH laser beam
with a photon energy twice that of the pump laser. Its phase
φ2(r,z) and that of the pump laser φ1(r,z) are related by the
equation φ2(r,z) = 2φ1(r,z), so the spatial distribution of its
phase is a direct copy of that of the pump. For a Gaussian
pump laser the phase front around the waist is flat in the radial
direction, so the SOH also has a flat phase front with a small
angular divergence in the far field. In HHG the phase of the
qth-order harmonic is the sum of the two terms in Eq. (1):
Around the focus the phase front of the first term is flat but
that of the second is not, so the total phase front is curved.
Putting the gas jet exactly at the focus would lead to a large
HHG divergence. Moreover, at this position the harmonics
from short and long trajectories would overlap with each
other [22] and interfere, resulting in bad spatial characteristics
with messy modulations [7,23].

The phase of high-order harmonic comprises the laser phase
and the intensity-dependent atomic-dipole phase. The two
phase fronts bend in opposite directions so at a certain position
the wavefront of the total phase may become flat. If cq is half
the curvature of the phase front of the qth order harmonic, it
can be calculated by the equation

2cq(r,z) = φ′′
q (r,z)

[
1 + φ′2

q (r,z)
] 3

2

, (2)

where φ′
q(r,z) and φ′′

q (r,z) are the first-order and second-order
derivatives of φq(r,z) with respect to r , respectively. For an
axial-symmetric system the on-axis (r = 0) curvature can be
simplified to 2cq(z) = φ′′

q (z)|r=0, so cq can be written as

cq = qclaser + cint, (3)

where claser and cint are the half-curvatures of the laser
phase front and intensity-dependent atomic dipole phase front,
respectively. For a Gaussian beam, cq can be expressed by the
following equation [22]:

cq = qk

2Rz

− 2α
I0z

w2
z

, (4)

where Rz, wz, and I0z are the wavefront radius, beam size, and
the on-axis (r = 0) intensity, respectively, at position z. The
first term is negative when z < 0 and positive when z > 0, as
can be seen from the dashed line in Fig. 5(a), which shows the
curvature as a function of z. Since α is always negative, the total
curvature 2cq may be zero when the gas cell is put in front of the
laser waist (z < 0). Actually, when it is placed at z = −8 mm,
the total phase front is flat (as demonstrated in our previous
work [22]). However, at this position, the light intensity drops
dramatically to less than 50% of the peak intensity at z = 0.
This low intensity would result in low efficiency and a waste
of the light energy. For a low energy femtosecond laser (mJ
level) it is not practical to generate high-order harmonics with
the gas cell at this position.
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FIG. 5. (Color online) (a) On-axis (r = 0) curvature of the laser
phase front. The vertical axis is in units of the absolute value of the
pump laser wave vector k. (b) On-axis intensity. The laser beam has a
60-μm Gaussian waist. The TB beam is the same as that in Fig. 1(a).
Solid line (blue [gray]): TB beam; dashed line (red [gray]): Gaussian
beam; z = 0 is the position of the laser focus.
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FIG. 6. (Color online) Panels (a) and (b) show the q times the
laser phase curvature (+1 × laser) (blue [gray] solid line) and the
−1 times the intensity-dependent atomic-dipole phase curvature
(−1 × int) (black dot-dashed line) for Gaussian beam and TB beam
respectively. Panel (c) shows the phase front curvatures of high-order
harmonics for the Gaussian beam (blue [gray] triangle) and the
TB beam (black circle). Laser intensity is 8 × 1014 Wcm−2. The
harmonic order q is 80. Wavelength of pump laser is 800 nm.
α = −4 × 10−14 cm2 W−1.

The TB beam has two on-axis intensity peaks at z =
−8.3 mm and z = 7.2 mm, as shown in Fig. 5(b) (solid line)
and Fig. 2(b). Its curvature as a function of z is very different
from that of the Gaussian beam, as can be seen from the
solid line in Fig. 5(a). Around z = 4 mm its curvature reaches
an extremum with an absolute value larger than that of the
Gaussian beam. This large negative curvature can be used
to cancel the large positive curvature of the atomic-dipole
phase front. Moreover, at this position the light intensity
only drops to 80% of the peak intensity, as can be seen
from the solid line in Fig. 5(b). This TB beam can therefore
simultaneously fulfill the two requirements of large negative
curvature of the phase front and high light intensity, so it can
be used to generate high-order harmonics with small angular
divergence.

The curvatures of the two phase fronts of Eq. (3) are shown
in Fig. 6. The results for the Gaussian beam are shown in
Fig. 6(a). The solid line is the laser phase curvature, and the
black dot-dashed line is the atomic-dipole phase curvature
which we have drawn reversed to show the crossover of the
two lines; at this crossing point the two curvatures of the two
phase fronts have the same absolute values but exactly opposite
signs, so the harmonic has a flat phase front. For the Gaussian
beam, as discussed above, the position of cancellation is around
z = −8 mm, where the laser intensity is too low so it is
unpractical experimentally. Figure 6(b) shows the results for
the TB beam. Several crossings exist around the laser focus.
We see, especially, that around z = 5 mm, the laser intensity
is strong enough for practical use. The total curvatures can be
seen in Fig. 6(c). As expected, the zero curvature point for

the Gaussian beam is around z = −8 mm. For the TB beam, a
new feature appears: Around z = 4 mm, the curvature of the
harmonic phase front exhibits an extremum, so around this
position it varies slowly. This is beneficial for phase matching.
Another mechanism is mentioned by Altucci et al. [15]. In
their paper, fast laser pump oscillations, which are not present
in our model, are considered to cause stable points which are
beneficial for phase matching. In our work, phase matching
favors the emergence of extreme points, which can lead to a
long phase matching area for the TB beam. For a Gaussian
beam (blue [gray] triangles in Fig. 6 (c)), around z = 4 mm
the curvature also reaches an extremum. The slow variation
of the high-order harmonic phase front along the z direction
can explain a well-known fact: The region several millimeters
behind the laser focus of a Gaussian beam is good for phase
matching. This explanation is in accordance with the phase
matching map of Ref. [9], which takes into account the gradient
of the harmonic phase.

IV. EXPERIMENT AND SIMULATION

In the experiment a 5-fs laser pulse with 0.4 mJ energy is
used. The gas cell is a sealed nickel tube 1 mm in diameter
filled with neon gas to a pressure of around 20 kPa. The laser
pulse is focused such that it burns a hole through both sides
of the tube wall, and thus creates a tunnel for the generated
high-order harmonics to pass through. These harmonics are
then focused by a toroidal mirror and diffracted by a flat-field
grating into a soft x-ray charge-coupled device (CCD) camera,
in which the far field spectrum is recorded.

FIG. 7. (Color online) High-order harmonics spectra recorded in
the far field. The highest order harmonics are produced in panel (c),
where the laser intensity is around its peak value [z = 7.2 mm from
the focus, as shown in Fig. 5(b)]; this position of the gas cell is defined
as z0. Other distances of the cell are denoted in the upper right-hand
corners. In panels (a), (b), and (d), the cell is located 4 and 2 mm in
front of and 1 mm behind z0, respectively. All color bars are on the
same log scale.
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The high-order-harmonics spectra are shown in Fig. 7.
The highest order harmonics are realized in Fig. 7(c), where
the pump intensity is approximately at its maximum and
corresponds to a cell position of about z = 7.2 mm from the
focus (Fig. 3). This position is defined as z0 in Fig. 7. When
the cell is moved in the positive z direction, as shown in
Fig. 7(d), the order and intensity of the harmonics decrease,
while the divergence increases. When the cell is moved closer
to the focus along the negative z direction, as shown in
Figs. 7(b) and 7(a), the harmonic intensity increases but the
divergence is reduced so the high-order harmonics form a
bright beam of small angular divergence. The brightness of
harmonics in Fig. 7(a) is much greater than that in Fig. 7(d).
Figures 7(a) and 7(b) correspond to the region around the
extremum z = 4 mm in Fig. 6(c). This result verifies our
above analysis that three characteristics, namely, a relatively
high pump intensity, a small harmonic phase curvature, and a
slowly varying harmonic phase front around an extremum, are
beneficial for the generation of bright high-order harmonics
with small angular divergence. An important experimental
condition which should be mentioned is that the carrier-
envelope phase (CEP) of the pump laser was stabilized, so
the harmonic spectra in Fig. 7 were obtained with the same
CEP. The CEP-dependent harmonic spectrum was described
in our previous work [24].

For comparison, numerical simulations were made. The
single-atom response of HHG was calculated based on the
strong-field approximation model [6]. The propagation of
high-order harmonics was calculated based on the paraxial
wave function [25,26]. In the model, laser-induced free-
electron oscillation is the source of the propagation equation
of the pump laser, and the calculated harmonic dipole
moment is the source of the propagation equation of the
harmonics. The parameters in our simulation were the same
as those in the experiment except that the length of the gas
cell was taken to be 0.1 mm and the focal length of the
collimating mirror was 0.7 m. The results are shown in
Fig. 8. Figure 8(c) shows the spectrum when the harmonics
reach the highest order. When the gas cell is moved in the
positive z direction as shown in Fig. 8(d), the intensity drops
and the divergence increases. When moved in the negative
z direction as shown in Figs. 8(b) and 8(a), the intensity is
enhanced and the divergence decreases. These characteris-
tics are in accordance with the experimental results shown
in Fig. 7.

It should be explained why the cell length and focal length
of the collimating mirror in the simulation were chosen to be
different from the actual experimental values. The reason for
the latter was to make the simulated beam size around the laser
focus the same as that in the experiment. The selection of a
shorter cell was for two reasons. First, the result would show
that the conclusion of this paper is that the spatial distribution
of the high-order harmonics depend mainly on the r and not
the z distribution of the phase. Second, although the real cell
was 1 mm in length, the actual interactive length may be
far less than 1 mm, which was also discussed in previous
studies [1,27]. The phase matching of the few-cycle TB laser
beam with finite aperture size, including the extrema of the
phase front curvature, will be discussed in detail in a following
paper.

FIG. 8. (Color online) Simulated high-order-harmonic spectra in
the far field for a laser intensity of 8 × 1014 W cm−2. From panels
(a) to (d), the gas cell is moved along the positive z direction. The
values of z correspond to the positions in Fig. 3. All color bars are on
the same log scale.

V. DISCUSSION

For the benefit of practical experiments, we now describe
when one should take the finite size of optical element into
account for the maximum amount of laser energy to be
enclosed by the optical elements.

A Gaussian beam is assumed to propagate freely from plane
A to plane B. In both planes most of the energy (>99.99999%)
is concentrated within the ranges r < ra and r < rb, where ra

and rb are the radii of the optical elements in planes A and
B, respectively. Any other beam with a greater energy inside
r < ra in plane A may undergo stronger diffraction, so its
energy may flow out of the range of r < rb in plane B. Thus
the optical element in plane B may be regarded as infinite for
a Gaussian beam but as finite for other beams. Even when all
optical elements can be considered as being infinite in size
for a Gaussian beam, whether we should take their finite size
into consideration depends on the degree of the beam’s spatial
constraint. A beam is well constrained in a plane when its
energy is concentrated at the center (r = 0) and no oscillations
of the intensity exist in large r areas. The oscillation may
lead to the flow of energy to large r areas. If a beam is well
constrained both in the initial plane A and in plane B at infinity,
it is well constrained in the whole propagation process and is
spatially well constrained. The field distribution at plane B
is the Fourier transform of the distribution at plane A, so in
other words, if a beam is well constrained both in space and in
the spatial-frequency domain at the initial plane, it is spatially
well constrained. The Gaussian and TB beams are both well
constrained at the output plane of a hollow fiber in space, while
in the spatial frequency domain the former is well constrained
but the latter is not and will diverge greatly.

In our case of Fig. 4 at the front surface of the collimat-
ing mirror, 99.9999988% of the Gaussian beam energy is
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FIG. 9. (Color online) Convergence of the field energy as a
function of r at the front surface of the collimating mirror of Fig. 1.
The unit of radial direction is the beam size for both the TB and
Gaussian beams. The y axis denotes the light energy inside the area
of r .

concentrated within the range of r < 3r0G, while only
97.9791190% of the TB beam energy lies in the area within
r < 3r0TB, where r0G and r0TB are the beam sizes of the
Gaussian and the TB beams, respectively. The beam size is
defined as the radius where the light intensity drops to e−2 of
the peak intensity. The convergences of energy for both beams
are shown in Fig. 9, where we can see that the Gaussian beam
shows a fast convergence but for the TB beam more than 0.2%
of the energy is still outside the area of 15r0TB. Therefore,
the mirror of 25.4 mm diameter can be seen as infinite for a
Gaussian beam but as finite for a TB beam. For a bad spatially
constrained beam, such as the TB beam, we should look into
the details of its field distribution at every optical element.

Finally, one important thing that must be mentioned is that
the characteristics of the TB beam discussed in this paper and
previous works result from its being truncated by the hollow
fiber and not its Bessel spatial distribution. Any beam, such as
a Gaussian beam, if truncated by a hard aperture would have

a similar spatial distribution as the TB beam around the laser
focus point.

VI. CONCLUSION

In conclusion, in this paper we investigated the generation
of high-order harmonics with minimized angular divergence
driven by a truncated Bessel beam which propagates through
optical elements of finite size. Mirrors with finite-size aper-
tures further truncate the TB beam, so around the laser focus
the spatial distribution of the TB beam is smooth and exhibits
no fast oscillations but has two intensity peaks around the laser
focus. Just in the front of the second peak the large curvature
of the laser phase front cancels that of the intensity-dependent
atomic-dipole phase front and leads to a flat phase front
of the high-order harmonics. This characteristic combined
with the relatively high pump intensity makes this a good
position for generating bright high-order harmonics with small
angular divergence. Moreover, for the high-order harmonics
several extrema of the curvature of the phase front around the
laser focus are beneficial for phase matching. This work has
practical importance because hollow fibers are widely used
in the field of ultrafast science. Our work, as a supplement
to previous works [14–16], provides a new way to generate
bright high-order harmonics with small angular divergence so
that the total phase front of the harmonics becomes flat.
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