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Spectroscopic Characteristics and Laser
Performance of Nd:Y1.8La0.2O3

Transparent Ceramics
Shenzhou Lu, Qiuhong Yang, Haojia Zhang, Yonggang Wang, Dongdong Huang, Qing Wang, and Zhiyi Wei

Abstract— (NdxY0.9−xLa0.1)2O3 (x = 0.005–0.04) transparent
ceramics were fabricated by conventional solid-state processing.
The radiative spectral properties of the ceramic samples were
evaluated by fitting the Judd–Ofelt model with the absorption
and emission data. (NdxY0.9−xLa0.1)2O3 ceramics have broad
absorption and emission bands with a radiative decay time of
328 μs. The absorption cross section at 806 nm and stimu-
lated emission cross section at 1078 nm are calculated to be
1.53× 10−20 and 5.22 × 10−20 cm2, respectively. The product of
quantum efficiency and the ionic concentration (ηN) exhibited
a peak value at 1.5 at% Nd3+ ion concentration, while the
lifetime decreases dramatically from 300 μs (0.5 at% Nd) to 49 μs
(4.0 at% Nd). With 1.0 at% Nd:Y1.8La0.2O3 ceramics acting as
a laser medium, continuous-wave output power of 1.03 W was
obtained at 1079.5 nm under an absorbed pump power of 7.2 W,
corresponding to a slope efficiency of 18.4%.

Index Terms— Emission cross section, laser oscillation,
Nd:Y1.8La0.2O3, quantum efficiency, transparent ceramics.

I. INTRODUCTION

IN RECENT years, Nd3+-doped solid state laser materials
have attracted much attention. The Nd3+-doped solid-state

laser hosts with four-level system usually have large stimulated
emission cross section, low laser output threshold, and strong
absorption peak at 808 nm, which matches the emission wave-
length of commercial laser diode (LD). Among these materi-
als, the cubic Y2O3 is an ideal laser host because it has good
optical, thermal, and chemical properties [1]–[3]. In particular,
Y2O3 possesses a high thermal conductivity of 13.6 W/mK,
which is larger than that of YAG [4]. However, the growth of
high-quality Y2O3 single crystals is a challenging task because
of its high melting point (2430 °C) and structural phase
transition from cubic to hexagonal phase at ∼2280 °C [5].

Many recent studies have focused on polycrystalline
ceramic lasers since the first report of laser oscillation in
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Nd:YAG transparent ceramics in 1995 [6]. Compared with
single crystals, ceramic laser materials have many advantages
such as ease of fabrication, low cost, high doping concentration
and mass production in a large size. The first laser oscillation
in Nd:Y2O3 ceramic materials was reported in 1973 [7], and
the laser material is Nd3+ doped Y2O3-ThO2 (NDY) solid-
solution transparent ceramics. However, all researches of this
material ground to a halt due to the radiological hazard of
ThO2. Since 2000, the optical quality of Y2O3 transparent
ceramics has improved greatly and is good enough to obtain
laser oscillations. In 2001, 1.5 at% Nd:Y2O3 transparent
ceramics fabricated by nanocrystalline and vacuum sintering
technology realized laser output under LD pumping, a maxi-
mum output power of 160 mW with a slope efficiency of 32%
was obtained [8]. Nowadays, Nd:Y2O3 transparent ceramics
can be fabricated at a relatively low sintering temperature of
1700 °C, which is about 700 °C lower than its melting point.

Our previous work shows that the sintering temperature
of Y2O3 transparent ceramics could be further decreased
by adding La2O3 as an additive [9]. Y2−2xLa2xO3 is a
solid solution of Y2O3 and La2O3. It has cubic glass-like
structure, which make it possible to have broad absorption
bandwidth [10]. This is of great benefit to lower dependency
on temperature control of laser device. In 2009, 1.5 at%
Nd:Y1.8La0.2O3 transparent ceramics fabricated by solid-state
reaction method realized laser output, a maximum output
power of 62 mW was obtained under diode pumping [11].

In this work, (NdxY0.9−xLa0.1)2O3 (x = 0.005–0.04) trans-
parent ceramics were fabricated by conventional solid-state
processing. The effects of Nd3+ concentration on the spectro-
scopic properties were investigated systematically, and a diode
pumped CW laser oscillation with a maximum output power
of 1.03 W was obtained in 1.0 at% Nd:Y1.8La0.2O3 ceramic
laser.

II. EXPERIMENT DETAILS

The starting materials Y2O3, La2O3 and Nd2O3 nanopow-
ders with purity of 99.99% were weighted accord-
ing to the desired composition of (NdxY0.9−xLa0.1)2O3
(x = 0.005–0.04), and then mixed with ZrO2 balls in anhy-
drous alcohol for 5–10 h. The mixed powders were dried
and calcined at 1100–1200 °C for 10 h, followed by 5–10 h
ball-milling in anhydrous alcohol, dried and sieved. Finally
disks with 23 mm in diameter and 6–8 mm in thickness were
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isostatically pressed at 200 MPa and sintered at 1650–1680 °C
for 40–50 h in H2 atmosphere.

Disc ceramic samples were double mirror polished for
spectroscopic analysis. Optical microscopy (Model BX60,
OLYPMUS, Japan) was used to observe the microstructures.
The transmittance and absorption spectra in the UV-VIS-NIR
were measured with a spectrophotometer (Model V-570,
JASCO, Japan) using Xe light as pump source. The fluores-
cence spectra and fluorescence lifetime excited with 808 nm
LD were measured with a fluorescence spectrum analyzer
(Fluorolog-3, Jobin Yvon Spex, France). All spectroscopic
analysis were made at room temperature.

III. THEORETICAL METHODS

The spectroscopic properties of Nd3+ in yttrium lanthanum
oxide transparent ceramics were investigated by Judd–Ofelt
(J-O) theory. In the J-O theory, the oscillator strength of an
electronic transition of average frequency ν from a level aJ to
another level bJ’ is given by [12], [13]

fcal = 8π2mν

3(2J + 1)he2n2

× [
χedSed(a J, b J ′) + χmdSmd(a J, b J ′)

]
. (1)

Here h is the Planck’s constant, J is the total angular momen-
tum of the initial state, e and m are the charge and the
mass of the electron, respectively. The factors χed and χmd
are the terms for local field corrections, which are functions
of the medium refractive index n: χed = n(n2 + 2)2/9 and
χmd = n3. Sed and Smd represent the line strengths for the
induced electric and magnetic dipole transition, respectively.
They are expressed by [14]

Sed(a J, b J ′) = e2
∑

t=2,4,6
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Smd(a J, b J ′) =
(

e2h2

16π2m2c2

) ∣
∣〈a J ‖L + 2S‖ b J ′〉∣∣2 (3)

where <||U (t)||> are the doubly reduced matrix elements
of the unit tensor operator of rank t = 2, 4 and 6, which
are calculated from the intermediate coupling approximation.
<‖L+2S‖> are the magnetic dipole operator matrix elements.

The �t parameters (t = 2, 4 and 6), known as the J-O
parameters, are determined by a least-squares fit of the theo-
retical oscillator strengths (fcal) to the values of experimentally
measured oscillator strengths (fesp) calculated from optical
absorption spectrum using the equation [15]

fexp = mc2

πe2 N

∫
α(λ)

λ2 dλ (4)

where c is the velocity of light in vacuum, N is the number
density of Nd3+ ions. α(λ) = 2.303D0(λ)/d is the measured
absorption coefficient at a given wavelength λ, and D0(λ) is
the optical density (logI0/I), λ is the mean wavelength of the
specific absorption band, d is the thickness of the sample.

The �t parameters were further used to evaluate the radia-
tive transition rates (Arad) from a particular emitting level

Fig. 1. Photograph of (NdxY0.9−xLa0.1)2O3 transparent ceramics. From left
to right, x = 0.005, 0.01, 0.015, 0.02, 0.025, and 0.04, respectively.

according to the equation [16]

Arad((a J, b J ′) = 64π4

3h(2J + 1)λ3

×
[
(n2 + 2)2

9
Sed + n3Smd

]
. (5)

The radiative lifetime (τrad) of an emitting state and the
emission branching ratio (βJ J”) of a transition can be defined
as:

τrad(J ) = 1
∑

J ′
Arad(a J, b J ′)

(6)

βJ J ′′ = A(a J, b′′ J ′′)
∑

J ′
A(a J, b′ J ′)

. (7)

IV. RESULTS AND DISCUSSION

A. Physical Properties and Absorption Spectra

Fig. 1 is the photograph of (NdxY0.9−xLa0.1)2O3 (x =
0.005–0.04) transparent ceramics. Each pellet is 18 mm in
diameter and ∼3 mm in thickness. All the samples are
completely transparent and the letters behind the ceramics can
be seen distinctly.

Fig. 2(a) shows the transmittance spectrum of Nd:Y1.8
La0.2O3 transparent ceramics. The transmittance of 3 mm thick
sample is 80.0% at the lasing wavelength of 1078 nm, which
is close to the theoretic transmittance value of Y2O3 at this
wavelength. Fig. 2(b) is the optical micrograph of the polished
surface after etched in HCl. It reveals that the sample has
uniform grains with average size of 20–30 μm and there are
almost no pores or impurities between the grain boundaries.

Fig. 3(a) is the room-temperature absorption spectrum of
1 at% Nd:Y1.8La0.2O3 transparent ceramics. The absorption
band suited for LD pumping is in the wavelength range from
780 to 850 nm corresponding to the 4I9/2 → 4F5/2 + 2H9/2
transition. Similar to Nd:Y2O3 ceramics [17], the strongest
peak in this range is centered at 820 nm, of which the
absorption coefficient is 4.27 cm−1 and the full width at half-
maximum (FWHM) is 4.0 nm. The FWHM of Nd:Y1.8La0.2O3
ceramics at LD pump wavelength 806 nm is about 7.8 nm,
which is two times that of Nd:Y2O3 ceramics (4 nm), and
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Fig. 2. (a) Transmittance spectrum and (b) optical micrograph of
(NdxY0.9−xLa0.1)2O3 transparent ceramics.

nearly eight times that of Nd:YAG ceramics (∼1 nm) [18].
It may be induced by a disorder glass-like structure of
Y1.8La0.2O3 transparent ceramics. On the other hand, as Nd3+
ion (98 pm) can substitute both the lattice sites of La3+
(103 pm) and Y3+ (89 pm) ions, two different groups of
optical centers are present, and the absorption peaks are
further inhomogenously broadened [10]. Broad absorption
bands of Nd:Y1.8La0.2O3 ceramics are advantageous for lower
dependency on pump wavelength and temperature control of
laser device. The absorption cross section (σabs) of Nd3+ at
wavelength λ can be calculated as follow:

σabs = 2.303 log(I0/I )

L · N
(8)

where log(I0/I) is optical density, N is numbers of active
ions in unit volume and L is thickness of the specimen. The
calculated absorption cross sections at 806 and 820 nm are
1.53×10−20 and 1.96×10−20 cm2, respectively. With increas-
ing Nd3+ concentration, the positions of all spectral bands
remain practically the same, whereas the absorption coefficient
varies linearly with the concentration, as shown in Fig. 3(b).

(a)

(b)

Fig. 3. (a) Room-temperature absorption spectrum of 1 at%
(NdxY0.9−xLa0.1)2O3 transparent ceramic and (b) dependence of absorption
coefficient at 580, 746, 806, and 820 nm from Nd3+ concentration.

B. Radiative Properties and Stimulated Emission
Characteristics

The theoretical (fcal) and experimental (fesp) oscillator
strength of the transitions were calculated by using equation
(1) and (4), respectively. The results are given in Table I.
Three intensity parameters �t (t = 2, 4, 6) can be calculated
from the measured values of oscillator strength for differ-
ent transitions by using the least square fitting procedure.
Theoretically, �2 is strongly dependent on the local environ-
ments of rare earth ions sites and proportional to the covalence
of Nd3+-O2−. The calculated results show that three intensity
parameters (�2, �4, �6) in our fabricated ceramics are 3.79×
10−20, 2.98 ×10−20, and 2.24 ×10−20 cm2, respectively. The
�2 value of Nd:Y1.8La0.2O3 ceramics is smaller than that of
Nd:Y2O3 ceramics (�2 = 4.09 × 10−20 cm2) [17], which
indicates that Nd:Y1.8La0.2O3 ceramics possesses stronger
covalence than Nd:Y2O3 ceramics. Additionally, the root-
mean-square error deviation (δ) of the intensity parameters
is 0.11 × 10−6, indicating the validity of the Judd-Ofelt
theory for predicting the spectral intensities and the reliable
calculations.



296 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 49, NO. 3, MARCH 2013

TABLE I

OBSERVED ABSORPTION BANDS WITH THE EXPERIMENTAL AND

CALCULATED OSCILLATOR STRENGTHS IN 1 at%

Nd:Y1.8La0.2O3 TRANSPARENT CERAMIC

Excited States
Wavelength (nm)

Oscillator Strength (×10−6)

(Ground State 4I9/2) fexp fcal
4G11/2+2K15/2 461.5 0.305 0.373
2G9/2 + (2D,2P)3/2 479 0.82 0.599
2K13/2+4G9/2+4G7/2 532.5 4.958 4.715
2G7/2+4G5/2 589.9 20.123 20.134
2H11/2 625.5 0.365 0.107
4F9/2 687.3 0.537 0.383
4F7/2+4S3/2 752.3 4.342 4.546
4F5/2+2H9/2 812.3 5.209 4.996
4F3/2 887.2 1.743 1.924

Fig. 4. Emission spectra of (NdxY0.9−xLa0.1)2O3 (x = 0.005−0.04)
transparent ceramics at room temperature. Inset: dependence of Nd3+ con-
centration versus line-width of the emission band centered at 1076 nm.

Fig. 4 shows the room-temperature three-band emission
spectra of Nd3+ ions (4F3/2 → 4IJ , J = 9/2−13/2) in
(NdxY0.9−xLa0.1)2O3 (x = 0.005−0.04) ceramic. The inset is
the dependence of Nd3+ concentration versus line-width of the
emission bands centered at 1076 nm. All spectra present the
same shape and the intensity of these emission bands decreases
with concentration due to the quenching effect of Nd3+ ions.
The strongest emission peak is at 1078 nm, corresponding
to the 4F3/2 → 4I11/2 transition of Nd3+, with the FWHM
of 5.3 nm, which is wider than that of Nd:Y2O3 (2.63 nm)
[17] and Nd:YAG (∼0.7 nm @ 1064 nm) [18]. Moreover, the
broadening of the spectrum makes the two peaks centered at
1074 and 1078 nm to overlap and form a wider composite peak
with FWHM of ∼9 nm (As shown in Fig. 5). So compared
with Nd:Y2O3 ceramics, Nd:Y1.8La0.2O3 ceramics are more
likely to achieve widely tunable and mode-locked pulse laser.

The stimulated cross sections σe of the ceramics is deter-
mined by the equation below

σe(λ) = 1

8πn2c

1

τrad

λ5 I (λ)
∫

λI (λ)dλ
(9)

Fig. 5. Emission spectra of Nd3+ in Y1.8La0.2O3 and YAG ceramics for
the4F3/2 → 4I11/2 transition at room temperature.

where the I(λ) is the intensity of emission spectrum, n is
refractive index of the material and c is light velocity. The
stimulated emission cross section of the main laser transition
is calculated to be 5.22 × 10−20 cm2 at 1078 nm. This
values is smaller than the reported values of 7.63 × 10−20

and 6.35 × 10−20 cm2 at 1074.6 and 1078.6 nm wavelengths
in 1.5 at.% Nd:Y2O3 ceramics, respectively [17].

Three intensity parameters (�t) can be substituted in for-
mula (5) to get the radiative transition probabilities of meta-
stable level 4F3/2. The calculated line strength (Sed), transition
probability (A), radiative decay time (τrad), and fluorescence
branching ratio (β) of Nd:Y1.8La0.2O3 ceramics are sum-
marized in Table II along with the corresponding data of
Nd:Y2O3 ceramics [17] and Nd:Y2O3 single crystal [19]. A
radiative decay time of 328 μs is obtained for Nd:Y1.8La0.2O3
ceramics, which is 7.5% higher than that for single
crystal. In addition, for Nd:Y2O3 ceramics, the branching ratio
βJ,11/2 of 4F3/2 → 4I11/2 intermanifold transition is about
1.2 times larger than βJ,9/2 of 4F3/2 → 4I9/2 channel. But
for Nd:Y1.8La0.2O3 ceramics, the value of βJ,9/2 is nearly
equal to that of βJ,11/2. This may be induced by the radius
difference between La3+ (R = 1.03 Å) and Y3+ (R = 0.89 Å),
which will cause the distortion of lattice and the change of the
crystal field. As a result, the βJ,9/2 of 4F3/2 → 4I9/2 channel
in Nd:Y1.8La0.2O3 ceramics becomes large after adding La2O3
as an additive.

Table III summarizes the calculated results of fluorescence
branching ratio (β), quantum efficiency (η), and nonradiative
decay rates (Wnr) of the 4F3/2 → 4IJ (J = 9/2, 11/2,
13/2) emission transition in Nd:Y1.8La0.2O3 ceramics. The
Wnr values were obtained by subtracting the radiative decay
rate from the fluorescence decay rate (1/τs − 1/τr). For
1.0 at% Nd3+-doped Y1.8La0.2O3 ceramics, a decay time of
232 μs was obtained, which is very close to that of Nd:Y2O3
ceramics [17] and 11% shorter than that for Nd:Y2O3 single
crystal [20]. In order to estimate the fluorescence quenching
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TABLE II

CALCULATED RADIATIVE TRANSITION CHARACTERISTICS OF Nd:Y1.8La0.2O3 CERAMIC, Nd:Y2O3 CERAMIC, AND Nd:Y2O3 SINGLE CRYSTAL

Sample
Sed (×10−20 cm2) A (s−1) β (%)

τrad (μs) Ref.4I9/2
4I11/2

4I13/2
4I9/2

4I11/2
4I13/2

4I9/2
4I11/2

4I13/2

Nd:Y1.8La0.2O3
Ceramics 0.811 1.335 0.475 1418 1412 229 46.36 46.14 7.5 328

This
work

Nd:Y2O3
Ceramics 1.359 2.99 1.229 1125 1406 282 39.82 49.7 9.9 354 [17]

Nd:Y2O3
Single crystal 1.36 1.92 0.61 1703 1358 212 – – – 304 [19]

TABLE III

FLUORESCENCE BRANCHING RATIO (β), QUANTUM EFFICIENCY (η), AND NONRADIATIVE DECAY RATES (Wnr ) OF THE

4F3/2 → 4IJ (J = 9/2, 11/2, 13/2) EMISSION TRANSITION

Concentration (at%) β9/2 (%) β11/2 (%) β13/2 (%)
τs (μs)

η (%) Wnr (s−1)Nd:Y1.8La0.2O3
Ceramics

Nd:Y2O3
Ceramics

0.5 44.1 47.2 8.7 300 – 91.5 285

1.0 45.5 47 7.5 232 221 70.7 1262

1.5 45.4 46.5 8.1 185 175 56.4 2357

2.5 45.5 46.2 8.2 90 – 27.4 6951

4.0 45.2 46.6 8.2 49 – 14.9 17359

Ref. This work This work [17] This work This work

Fig. 6. Concentration dependence of decay time of Nd3+ ion in Y1.8La0.2O3
ceramics.

process in Nd:Y1.8La0.2O3 ceramics quantitatively, the decay
times of 4F3/2 emission band for different Nd3+ concentrations
were also measured. Fig. 6 shows the dependence of the
decay time of Nd3+ ions in Y1.8La0.2O3 ceramics for various
concentrations. With the concentration of Nd3+ ion increasing
from 0.5 to 4.0 at%, the decay time of Y1.8La0.2O3 ceramics
is decreased dramatically from 300 μs to ∼50 μs. This can be
ascribed to concentration quenching of Nd3+ ions. The very
rich energy levels of Nd3+ ion enables a variety of energy
transitions inside the system of Nd, which would induce a
self-quenching of emission from the metastable energy level
4F3/2. Especially when Nd3+ ions concentration is increased,

Fig. 7. Dependence of the quantum efficiency (η) on Nd3+ concentration
(N) for Nd3+-doped transparent ceramics.

the length between two adjacent Nd3+ ions is decreased and
the transfer becomes easier.

Fig. 7 is the dependence of the quantum efficiency (η) on
Nd3+ concentration (N) for Nd:Y1.8La0.2O3, Nd:Y2O3 [17]
and Nd:YAG ceramics [20]. As shown in Fig. 7, the η values
of all three kinds of ceramics decrease dramatically with the
increase of Nd3+ content. The trend of the quantum efficiency
versus Nd3+ concentration for Nd:Y1.8La0.2O3 ceramics is
close to that of Nd:Y2O3 ceramics. For Nd:Y1.8La0.2O3 and
Nd:Y2O3 ceramic, the maximum values of η are 91.5% and
∼89% when Nd3+ content is 0.5 at% and 0.1 at%, respec-
tively. Although Nd:YAG ceramics show a larger η value, the
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Fig. 8. Dependence of the quantum efficiency and ionic concentration product
(ηN) on active ion concentration (N) for Nd:Y1.8 La0.2O3 and Nd:Y2O3
ceramics.

quantum efficiency of Nd:Y1.8La0.2O3 ceramics (91.5%) is
still comparable with that in Nd:YAG ceramics (94%) when
Nd3+ concentration is lower (0.5 at%).

In transparent ceramics, the active ion concentration can
be increased more than that of the single crystal without any
appreciable structural deformations, so the pump absorption
can be enhanced so as to neutralize the quenching effect. Thus,
we calculated the product of quantum efficiency and the ionic
concentration (ηN) as a merit of Nd:Y1.8La0.2O3 ceramics.
The results are shown in Fig. 8. The ηN values of Nd:Y2O3
ceramics were also given for comparison [17]. For both
kinds of ceramics, the curves exhibit a decreasing tendency
after 1.5 at% dopant concentration due to the concentration
quenching effect of Nd3+ ions. The curves show a maximum
value of 0.71 in Nd:Y2O3 ceramics when Nd concentration
reaches 1.5 at%, whereas in Nd:Y1.8La0.2O3 ceramics, the
peak value is 0.84 at the same Nd concentration. Furthermore,
in Nd:Y1.8La0.2O3 ceramics, the ηN value is 0.68 even the Nd
concentration up to 2.5 at%, which is still comparable with the
maximum value of Nd:Y2O3 ceramics [17].

C. Laser Experiments

Fig. 9 shows the schematic diagram of the laser exper-
imental setup. A 1.0 at% Nd:Y0.18La0.2O3 ceramic with a
dimension of 5×3×3 mm 3 was used for lasing test (without
any antireflection coatings on both surfaces). The transmit-
tance of this sample is 80.0% at the lasing wave band of
1078 ∼ 1080 nm. The ceramic sample was placed in a 17 mm
length plane-concave resonator. The pump source was a fiber-
couple LD emitting at 808 nm with a core diameter of 200 μm
which was focused on the ceramic surface by two coupling
lenses (L1 and L2). The input mirror was a flat high reflection
mirror (HR) at 1020 ∼ 1200 nm and had high transmission at
the pumping wavelength. Output coupler (OC) was a concave
mirror with 80 mm radius. OC with transmissions of 2%, 6%
and 10% at 1080 nm were used in the experiment.

Fig. 9. Schematic diagram of the laser experimental setup. LD: laser diode.
L1 and L2: lens. HR: high reflection plate mirror. OC: output coupler.

Fig. 10. Output power of ceramic sample versus absorbed pump power.

Fig. 10 is the dependence of the output power versus the
absorbed pump power. By using the 6% OC, a maximum
output power of 1.03 W was obtained at 1079.5 nm under an
absorption pump power of 7.2 W, corresponding to a slope
efficiency of 18.4% and an optical-to-optical efficiency of
14.8%. To the best of our knowledge, this is the highest output
power achieved in an Nd3+-doped sesquioxide ceramic laser
up to now, and the slope efficiency of 18.4% is second only to
the reported highest slope efficiency for the Nd:Y2O3 ceramic
lasers (32%) so far [8]. Based on CW laser running, an 8.1 ps
pulse at a repetition rate of 98.4 MHz was also obtained in the
subsequent passive mode-locking operation [21]. The results
of the laser experiment confirmed the potential application
of Nd:Y0.18La0.2O3 transparent ceramics for high power and
ultrashort pulse laser devices.

V. CONCLUSION

(NdxY0.9−xLa0.1)2O3 (x = 0.005−0.04) transparent ceram-
ics were fabricated by conventional solid-state processing
using high-purity nanopowders. The transmittance spectra and
optical micrograph reveal the excellent optical quality of
Nd:Y1.8La0.2O3 ceramics with dense and porous-less struc-
ture. The absorption spectra of the samples are similar to that
of Nd:Y2O3 ceramics. When the Nd3+ content is 1.0 at%,
the FWHM and absorption cross section at the LD pumping
wavelength of 806 nm are 7.8 nm and 1.53 × 10−20 cm2,
respectively. The strongest emission peak is at wavelength
1078 nm with the stimulated emission cross section of
5.22 × 10−20 cm 2, FWHM of about 7 nm and the decay
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lifetime of 232 μs. Compared with Nd:Y2O3 ceramics and sin-
gle crystals, the broad absorption and emission bandwidths of
Nd:Y1.8La0.2O3 ceramics offer better possibility of achieving
the miniaturized LD pumping apparatus and ultrashort mode-
locked pulse laser output. By using 1.0 at% Nd:Y1.8La0.2O3
ceramics as a laser medium, CW output power of 1.03 W
was obtained at 1079.5 nm under an absorbed pump power of
7.2 W corresponding to a slope efficiency of 18.4 %, and this
is the highest power for the Nd-doped sesquioxides ceramics
laser up to now.
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