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1.  Introduction

Various aspects of optical solitons have been the subject of 
intense investigations in recent decades, as a result of both 
their fundamental relevance and potential versatility in appli-
cations ranging from data transmission to readdressing or 
switching [1–9]. Optical solitons have the tendency to main-
tain their shapes during the propagation due to the balance 
between the group velocity dispersion (GVD) and nonlin-
earity [10, 11]. One prominent theme of research in optical 
solitons is the soliton interaction [12–16]. When two optical 
solitons are mutually coherent, the interaction force between 
solitons can be attractive or repulsive, depending on their rela-
tive phase, and the properties they exhibit are normally associ-
ated with particles [17].

Traditionally, soliton interactions are usually considered to 
be elastic [18]. After soliton interactions, there is no change 
in physical quantities such as their amplitudes, velocities 
and shapes [18]. However, depending upon the individual 
pulse width, inter-pulse spacing and loss in optical fibers,  
co-propagating solitons do interact and share energy [11]. It is 
therefore necessary to investigate soliton interactions before 
implementing them in high speed optical communication sys-
tems. To overcome that problem, several effective methods 

have been proposed, and considerable theoretical and experi-
mental research has been carried out on soliton interactions 
[10, 19].

The nonlinear Schrödinger (NLS) equation  can be used 
to study the properties and features of soliton interactions 
in nonlinear optics. The following variable-coefficient NLS 
(vcNLS) equation is under investigation in this letter [10]:
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where u(z, t) is the temporal envelope of optical solitons. t is 
the time in the moving coordinate system, z is the longitudinal 
coordinate. β1(z) is the reciprocal of the group velocity, β2(z) 
represents the GVD coefficient, and γ(z) is the nonlinearity 
coefficient. When β1(z) = 0, equation (1) can be reduced into 
the standard vcNLS equation, and elastic interactions between 
optical solitons have been studied for the standard vcNLS 
equation [10].

However, soliton interactions in equation  (1) have not 
been studied. With the aid of the transformation in [20, 21], 
equation  (1) usually becomes the standard NLS equation. 
Researchers have studied the solutions of the standard NLS 
equation. However, they have not discussed the influence of 
β1(z) on soliton interactions with the final solution versus t. 
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In this paper, we will directly analyze the influence of β1(z) 
on soliton interactions using the solution forms. With β1(z), 
we will present a new type of soliton interaction. The inter-
action solitons are accompanied with an oscillating struc-
ture during their interactions. We find that their interaction 
dynamics are different from the elastic interactions reported 
previously [21]. The interaction strength can be controlled. 
More strikingly, the interaction can change from attractive 
to repulsive by changing the corresponding parameters, or 
vice versa.

This letter will be structured as follows. In section  2, 
the analytic two-soliton solutions for equation  (1) will 
be obtained. In section  3, the properties and features of 
interaction solitons will be discussed, and the influence 
of the corresponding parameters on soliton interactions 
will be analyzed. Finally, our conclusions will be given in 
section 4.

2.  Analytic two-soliton solutions

At first, the dependent variable transformation can be intro-
duced as [20–23]

=u z t
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where g(z, t) is a complex differentiable function, and f(z, t) 
is a real one (equation (1)). With symbolic computation, the 
bilinear forms for equation (1) are obtained as
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where the asterisk denotes the complex conjugate. Dz and Dt 
[24] are Hirota's bilinear operators, and are defined by
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where a and b are functions of z and t. m and l are positive 
integers. With the following power series expansions for  
g(z, t) and f(z, t) :
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where ε is a formal expansion parameter, bilinear forms 
(3)–(4) can be solved. Substituting expressions (6)–(7) into 
bilinear forms (3)–(4) and equating coefficients of the same 
powers of ε to zero yield the recursion relations for gn(z, t) 
and fn(z, t) . Then, the analytic two-soliton solutions for equa-
tion (1) can be derived.

To obtain the analytic two-soliton solutions for equa-
tion (1), we assume
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with bj1, bj2, kj1 and kj2(j = 1, 2) being real constants. aj1(z) and 
aj2(z) are the differentiable functions to be determined. With 
g1(z, t), and collecting the coefficient of ε in equation (3), we 
obtain the constraints on aj1(z) and aj2(z) as
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Substituting g1(z, t) into equation  (4), and collecting the 
coefficient of ε2, we yield

= + + +θ θ θ θ θ θ θ θ+ * + * + * + *f z t A A A A( , ) e e e e2 1 2 3 4
1 1 2 2 1 2 2 1� (10)

with

Figure 1. Soliton interactions with an oscillating structure. The parameters are M = 1, β1(z) = 1, γ(z) = 2, k11 = −1, b12 = 1 with (a) k12 = 0, 
k21 = −1, k22 = 0, b11 = 1, b21 = −1, b22 = −1, (b) k12 = 1, k21 = 2, k22 = 1, b11 = 0.5, b21 = −0.5 and b22 = −2.
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and M as an arbitrary constant.
In order to obtain g3(z, t), we substitute g1(z, t) and f2(z, t) 

into equation (4), and obtain
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Finally, we can obtain f4(z, t) as
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Without loss of generality, we write the analytic two-
soliton solutions for equation (1) as

= =
+

+ +
u z t

g z t

f z t

g z t g z t

f z t f z t
( , )

( , )

( , )

( , ) ( , )

1 ( , ) ( , )
.1 3

2 4
� (13)

3.  Discussion

According to solutions (13), we can obtain the soliton interac-
tions with the parameters M = 1, β1(z) = 1, γ(z) = 2, k11 = −1, 
b12 = 1, k12 = 0, k21 = −1, k22 = 0, b11 = 1, b21 = −1 and b22 = −1 
in figure 1(a). That phenomenon is the classic soliton inter-
action. The interactions between solitons are elastic, and the 
soliton properties do not change after interactions. However, 
when the values of bj1, bj2, kj1 and kj2 change, two solitons are 
accompanied with an oscillating structure during their interac-
tions as shown in figure 1(b).

The long-distance interactions between solitons being 
accompanied with an oscillating structure are due to the 
existence of the reciprocal of the group velocity β1(z). 

Figure 2. Soliton interactions with an oscillating structure with the same parameters as those given in figure 1(b), but with (a) b11 = 1, 
b12 = 2, b21 = −0.6, (b) k11 = 1, k12 = −1 and k21 = −2.

Figure 3. Soliton interactions with an oscillating structure with the same parameters as those given in figure 1(b), but with β1(z) = 2cos(8z), 
(a) γ(z) = 1 and (b) γ(z) = 0.01.
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Before soliton interactions, β1(z) results in the change of 
soliton phases and velocities, then the soliton oscillations 
are generated. When solitons interact with each other after 
a while, the interactions between them are weakened, and 
they separate in accordance with the original velocities and 
phases. The solitons change periodically when they interact 
with each other. Changing the values of bj1 and bj2 can adjust 
the amplitude of solitons in figure 2(a). The reason for the 
increasing amplitude can be explained by A1, A2, A3, A4, B1, 
B2 and B3 in expressions (10)–(12). The soliton amplitude 
decreases with the decreasing of b21, and the period of the 
soliton interactions increases. The values of kj1 and kj2 can 
adjust the initial phases of solitons, which can be seen in 
figure 2(b). Moreover, kj1 and kj2 can determine the interac-
tion distance of solitons, which depends on the initial phase 
difference between solitons. When the initial phase differ-
ence between solitons is π/2, the solitons interact with the 
shortest distance. When the initial phase difference between 
solitons is 0 or π, the soliton interactions have the longest 
interaction distance.

In figures  1 and 2, the values of β1(z) and γ(z) are con-
stants. Due to various perturbations, the balance between the 
dispersion and nonlinearity is broken, and the propagation 
of solitons is affected. In order to maintain a well-ordered 
propagation of solitons, it is necessary to introduce a slow 
change of the fiber parameters in the longitudinal direction. 
Therefore, the values of β1(z) and γ(z) will be assumed to be 
a function of z. When β1(z) = 2cos(8z) and γ(z) = 1, the soli-
tons change periodically in figure 3(a). The velocities of the 
solitons change in a cosine function due to the variation of 
β1(z). When we decrease the value of γ(z), the nonlinear effect 
results in the change of soliton phases, and the solitons propa-
gate in parallel in figure 3(b). Although they interact with each 
other, they propagate in a bound state of solitons. However, 
when β1(z) is a constant, γ(z) is a trigonometric form, such as 
β1(z) = 1 and γ(z) = 2cos(6z) in figure 4(a), the bound solitons 
are also obtained. Changing the value of γ(z), the bound state 
of solitons changes as shown in figure 4(b). When β1(z) and 
γ(z) are both functions, different bound states of the solitons 
are displayed in figure 5. Therefore, we can adjust the bound 

Figure 4. Soliton interactions with an oscillating structure with the same parameters as those given in figure 1(b), but with β1(z) = 1,  
(a) γ(z) = 2cos(6z), (b) γ(z) = 2cos(8z) + sin(z).

Figure 5. Soliton interactions with an oscillating structure with the same parameters as those given in figure 1(b), but with (a) 
β1(z) = cos(z), γ(z) = cos(6z), (b) β1(z) = 2cos(2z) and γ(z) = sin(2z).
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state of solitons through changing the values of β1(z) and γ(z).  
At the same time, by analyzing the influences of β1(z) and γ(z), 
we can avoid the disordered propagation of solitons when the 
dispersion and nonlinearity can not be balanced.

4.  Conclusions

Long-distance interactions between optical solitons with an 
oscillating structure have been investigated in this letter. The 
vcNLS equation  (see equation  (1)), which can be used to 
describe the soliton propagation, has been studied analytically. 
The analytic two-soliton solutions (13) have been obtained. 
Due to the existence of the reciprocal of the group velocity 
β1(z), the interaction solitons have been accompanied with an 
oscillating structure during their interactions (see figures 1–5),  
and the influences of the parameters of bj1, bj2, kj1 and kj2 on 
soliton interactions have been discussed. The amplitude of the 
solitons has been adjusted through changing the values of bj1 
and bj2 (see figure 2(a)). The soliton interactions have been 
changed from attractive to repulsive by changing the values 
of β1(z) and γ(z) (see figures 4 and 5). Our studies suggest that 
those phenomena could be used for studying the dispersion 
management systems.
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