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Abstract
In this work breathers are obtained in a hollow-core photonic crystal fiber (HC-PCF) for the
first time. The nonlinear Schrödinger equation describing the propagation of pulses in a
HC-PCF is investigated using the Hirota bilinear method and the auxiliary function method.
Analytic breather solutions are derived by an appropriate choice of parameters. Dynamical
behavior of breathers is exhibited, and the influences of different parameters on the
characteristics of breathers are discussed. The presented results could be used in fiber lasers,
nonlinear optics and Bose–Einstein condensates.

Keywords: breathers, hollow-core photonic crystal fibers, Hirota bilinear method, auxiliary
function method, analytic breather solutions

(Some figures may appear in colour only in the online journal)

1. Introduction

Photonic crystal fibers (PCFs) are optical fibers based on the
properties of photonic crystals [1]. Because of their ability
to confine light in hollow cores or with confinement char-
acteristics not possible in conventional optical fibers, PCFs
possess numerous unusual properties, including highly tunable
dispersion, nonlinearity and single mode operation at all wave-
lengths. Those properties are of fundamental importance for
applications in fiber-optic communications, fiber lasers, non-
linear devices, high-power transmission and highly sensitive
gas sensors [2–5]. More specific categories of PCFs include
photonic bandgap fibers, holey fibers, hole-assisted fibers and
Bragg fibers. Among these, some attention has been paid to
hollow-core photonic crystal fibers (HC-PCFs) [6–9].

HC-PCFs, which guide light due to the presence of a
photonic bandgap, represent a new generation of low-loss

3 Authors to whom any correspondence should be addressed.

transmission fibers. They enable high-power light delivery
in a single spatial mode [10]. HC-PCFs have also been
considered as suitable ‘hosts’ for overcoming the difficulties
caused by nonlinear interactions between laser light and
low-density gas media [11]. These advantages lead to many
fascinating applications for HC-PCFs, such as in sensors and
nonlinear optics in which the gas is introduced into the core
region [12, 13].

In this paper, the nonlinear dynamics of HC-PCFs will be
studied analytically. The propagation of pulses in a HC-PCF
can be described by the following nonlinear Schrödinger
(NLS) equation [14, 15]:

i ∂ξψ −
1
2
β2 ∂

2
τψ −

i
6
β3 ∂

3
τψ + |ψ |

2 ψ

− τR ψ ∂τ |ψ |
2
− η ψ

∫ τ

−∞

|ψ |2 dτ ′ = 0, (1)

where ψ(ξ, τ ) is the normalized electric-field envelope, ξ is
the longitudinal coordinate along the HC-PCF and τ is the
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time coordinate in a reference frame that moves with the pulse
group velocity. β2 represents the group-velocity dispersion
coefficient and β3 is the third-order dispersion coefficient.
τR ≡

∫
∞

0 τ ′[(1− ρ)̃δ(τ ′)+ ρ h(τ ′)] t0 dτ ′, where δ̃(τ ′) is the
Dirac delta function, t0 is the input pulse duration, ρ is the
relative strength of the non-instantaneous Raman nonlinearity
and h(τ ′) is the causal Raman response function of the gas
[16, 17]. η ≡ k0σ̃ t0ω2

T/(2Aeff γKω
2
0), where k0 = ω0/c with

c being the speed of light and ω0 is the input pulse central
frequency, σ̃ is related to two constants [14], ωT is the
maximum plasma frequency, Aeff is the effective mode area
and γK is the nonlinear Kerr coefficient of the gas.

For equation (1), solitons, being a type of localized
nonlinear excitation, have been studied extensively in HC-
PCFs [14, 15, 18]. An analytic study on controlling soliton
dynamics in a HC-PCF has been presented and the features
and properties of solitons have been discussed in [18]. It
has been theoretically shown [15] that photoionization leads
to a constant acceleration of solitons in the time domain
with a continuous shift to higher frequencies, limited only
by ionization loss. By applying the Gagnon–Bélanger gauge
transformation, stationary negative-slope two-peak inverted
gravity-like soliton solutions have been obtained for pulses
propagating in a HC-PCF filled by Raman-inactive gases [14].
Moreover, unconventional long-range nonlocal interactions
between temporally distant solitons, unique to gas plasma
systems, have been predicted and studied [14].

A more widespread class of localized nonlinear excita-
tions, which are perhaps even more important than solitons in
nonlinear optics and Bose–Einstein condensates (BECs), are
breathers [19]. Breathers need practically no activation energy,
and can bridge the gap between highly nonlinear modes and
linear phonon modes [19]. Furthermore, the internal degree of
freedom of breathers increases their potential to describe phys-
ical phenomena. Thus, it is necessary to investigate breathers
in HC-PCFs.

To the best of our knowledge no studies have explic-
itly characterized breathers in a HC-PCF described by equa-
tion (1). The present paper has the goal of demonstrating
the existence of breathers in HC-PCFs. Here we focus on
equation (1), which will be studied by means of the Hirota
bilinear method and the auxiliary function method. We present
for the first time analytic breather solutions for equation (1),
and the influences on these breathers will be discussed. Our
results may have an important role in the research of some
physical phenomena such as fiber lasers, nonlinear optics and
BECs.

The paper will be structured as follows. In section 2 we
present the analytic breather solutions for equation (1). In
section 3 we study the features and properties of breathers,
and analyze the influences on breathers. Finally in section 4
we summarize our findings and present our conclusions.

2. Bilinear forms and analytic breather solutions for
equation (1)

First we introduce the dependent variable transformation
[20–23]

ψ(ξ, τ )=
g(ξ, τ )
f (ξ, τ )

, (2)

where g(ξ, τ ) is a complex differentiable function and f (ξ, τ )
is a real one. After some symbolic manipulations, bilinear
forms with an auxiliary function s = s(ξ, τ ) can be obtained
for equation (1) as

1
2 β2 D2

τ f f + g g∗ = 0, (3)

Dτ gg∗− s f = 0, (4)

i Dξ g f − 1
2 β2 D2

τ g f

−
i
6
β3 D3

τ g f + η β2 g fτ + τR g s = 0 (5)

with β3 = 2 i τR β2.
Here, Hirota’s bilinear operators Dξ and Dτ [24] are

defined by

Dm
ξ Dn

τ (ab)=
(
∂

∂ξ
−

∂

∂ξ ′

)m (
∂

∂τ
−

∂

∂τ ′

)n

× a(ξ, τ ) b(ξ ′, τ ′)
∣∣
ξ ′=ξ, τ ′=τ

. (6)

The bilinear forms (3)–(5) can be solved by the following
power series expansions for g(ξ, τ ), f (ξ, τ ) and s(ξ, τ ):

g(ξ, τ ) = ε g1(ξ, τ )+ ε
3 g3(ξ, τ )+ ε

5 g5(ξ, τ )+ s, (7)

f (ξ, τ )= 1+ ε2 f2(ξ, τ )+ ε
4 f4(ξ, τ )

+ ε6 f6(ξ, τ )+ s, (8)

s(ξ, τ ) = ε2 s2(ξ, τ )+ ε
4 s4(ξ, τ )+ ε

6 s6(ξ, τ )+ s, (9)

where ε is a formal expansion parameter. Substituting ex-
pressions (7)–(9) into bilinear forms (3)–(5) and equating
coefficients of the same powers of ε to zero yields the recursion
relations for gn(ξ, τ ), fn(ξ, τ ) and sn(ξ, τ ). Then, analytic
breather solutions for equation (1) can be obtained.

To derive the analytic breather solutions, we take

g(ξ, τ )= g1(ξ, τ )+ g3(ξ, τ ),

f (ξ, τ )= 1+ f2(ξ, τ )+ f4(ξ, τ ),

s(ξ, τ )= s2(ξ, τ )+ s4(ξ, τ ),

(10)

where

g1(ξ, τ )= eθ1 + eθ2 , (11)

θ j = a j ξ + b j τ + k j

= (a j1+ i a j2) ξ + (b j1+ i b j2) τ + k j1+ i k j2

with a j1, a j2, b j1, b j2, k j1 and k j2 (( j = 1, 2) are real
constants). With g1(ξ, τ ), and collecting the coefficient of ε in
equation (5), we can get the constraints on the parameters:

a j1 =
1
3β2τRb3

j1− b j2β2b j1− b2
j2β2τRb j1,

a j2 = −
1
3β2τRb3

j2−
1
2β2b2

j2+ b2
j1β2τRb j2+

1
2 b2

j1β2.

Substituting g1(ξ, τ ) into equations (3) and (4), and
collecting the coefficient of ε2 yields

f2(ξ, τ )= A1eθ1+θ
∗

1 + A2eθ2+θ
∗

2 + A3eθ1+θ
∗

2 + A4eθ2+θ
∗

1 ,

s2(ξ, τ )= B1eθ1+θ
∗

1 + B2eθ2+θ
∗

2 + B3eθ1+θ
∗

2 + B4eθ2+θ
∗

1
(12)

2
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with

A1 =
1

4b2
11β2

, A2 =
1

4b2
21β2

,

A3 =
1(

b1+ b∗2
)2
β2
, A4 = A∗3,

B1 = 2ib12, B2 = 2ib22,

B3 = b1− b∗2, B4 = b2− b∗1 .

We substitute g1(ξ, τ ), f2(ξ, τ ) and s2(ξ, τ ) into
equation (5) and collect the coefficient of ε3, yielding the
expression g3(ξ, τ ) as

g3(ξ, τ )= E1e2θ1+θ
∗

1 + E2e2θ1+θ
∗

2 + E3eθ1+θ2+θ
∗

1

+ E4eθ1+θ2+θ
∗

2 + E5e2θ2+θ
∗

1

+ E6e2θ2+θ
∗

2 (13)

with

E1 =
4ib11b12τR− η

8b3
11β2 (2b1τR+ i)

,

E2 =
(b2

1 − b∗22 )τR− η(
b1+ b∗2

)3
β2 (2b1τR+ i)

,

E3 =
(
i (b1− b2)

2
+ η (b1− b2)

− 4ηb11+
(

b3
2 − b3

1

)
τR

+ 2ib12τR

(
7b2

11− b2
12

)
+ b2b∗1

(
b2− b∗1

)
τR
)

×
(
4b2

11
(
b∗1 + b2

)2
β2 (b1τR+ b2τR+ i)

)−1
,

E4 =
(
i (b2− b1)

2
+ η (b2− b1)− 4ηb21

+

(
b3

1 − b3
2

)
τR+ 2ib22τR

(
7b2

21− b2
22

)
+ b1b∗2

(
b1− b∗2

)
τR
)(

4b2
21
(
b1+ b∗2

)2
× β2 (b1τR+ b2τR+ i)

)−1
,

E5 =
(b2

2 − b∗21 )τR− η(
b∗1 + b2

)3
β2 (2b2τR+ i)

,

E6 =
4ib21b22τR− η

8b3
21β2 (2b2τR+ i)

.

In order to obtain f4(ξ, τ ), substituting g1(ξ, τ ), f2(ξ, τ ),
s2(ξ, τ ) and g3(ξ, τ ) into equation (3), and collecting the
coefficient of ε4, we get

f4(ξ, τ )= M1e2θ2+2θ∗2 +M2eθ1+θ2+2θ∗2

+ M3e2θ1+2θ∗2 +M4e2θ2+θ
∗

1+θ
∗

2

+ M5eθ1+θ2+θ
∗

1+θ
∗

2

+ M6e2θ1+θ
∗

1+θ
∗

2 +M7e2θ2+2θ∗1

+ M8eθ1+θ2+2θ∗1 +M9e2θ1+2θ∗1 (14)

with

M1 =
E6+ E∗6
16b2

21β2
,

M2 =
E4+ E∗5 + E∗6 − A2 A3β2 (b1− b2)

2(
b1+ b∗2 + 2b21

)2
β2

,

M3 =
E2+ E∗5

4
(
b1+ b∗2

)2
β2
,

M4 =
E∗4 + E5+ E6− A2 A4β2

(
b∗1 − b∗2

)2(
b∗1 + b2+ 2b21

)2
β2

,

M6 =
E1+ E2+ E∗3 − A1 A3β2

(
b∗1 − b∗2

)2(
b1+ b∗2 + 2b11

)2
β2

,

M5 =
(
E3+ E4+ E∗3 + E∗4 − 4A1 A2β2

× (b11− b21)
2
+ 4A3 A4β2 (b12− b22)

2)
×
(
4 (b11+ b21)

2 β2
)−1

,

M7 =
E∗2 + E5

4
(
b∗1 + b2

)2
β2
,

M8 =
E∗1 + E∗2 + E3− A1 A4β2 (b1− b2)

2(
b∗1 + b2+ 2b11

)2 ,

M9 =
E1+ E∗1
16b2

11β2
.

Using equation (4), and according to the procedure to
obtain f4(ξ, τ ), we can obtain s4(ξ, τ ) as

s4(ξ, τ )= N1e2θ2+2θ∗2 + N2eθ1+θ2+2θ∗2 + N3e2θ1+2θ∗2

+ N4e2θ2+θ
∗

1+θ
∗

2 + N5eθ1+θ2+θ
∗

1+θ
∗

2

+ N6e2θ1+θ
∗

1+θ
∗

2 + N7e2θ2+2θ∗1

+ N8eθ1+θ2+2θ∗1 + N9e2θ1+2θ∗1

with

N1 = 2b2 E6− 2b∗2 E∗6 − A2 B2,

N3 = 2b1 E2− 2b∗2 E∗5 − A3 B3,

N2 = (b1+ b2)E4− A3 B2− A2 B3−
(
b1+ b∗2 − 2ib22

)
× E∗5 +

(
b1− b∗2 − 2b21

)
E∗6 ,

N4 =
(
b2+ b∗1 + 2ib22

)
E5− B4 A2− A4 B2

−
(
b∗1 + b∗2

)
E∗4 +

(
b2+ 2b21− b∗1

)
E6,

N5 = 2 (b11+ ib22) E3+ 2 (b21+ ib12) E4

− 2 (b11− ib22) E∗3 − 2 (b21− ib12) E∗4

− A2 B1− A1 B2− A4 B3− A3 B4,

N6 =
(
b1− b∗2 + 2b11

)
E1+

(
b1+ b∗2 + 2ib12

)
E2

− A3 B1− A1 B3−
(
b∗1 + b∗2

)
E∗3 ,

3
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Figure 1. Breather profiles for the analytic breather solution (15) to equation (1). The parameters are β2 =−0.5, τR = 2,
b11 = 0.15,b12 = 0.5, b21 = 0.15, b22 =−1, k12 = 1.5, k22 = 0.5, η= 0.3 with (a) k11 =−2 and k21 =−1, (b) k11 =−0.5 and k21 = 1.

Figure 2. Breather profiles for the analytic breather solution (15) to equation (1) with the same parameters as those given in figure 1(a) but
with k21 = 1.

N7 = 2b2 E5− A4 B4− 2b∗1 E∗2 ,

N9 = 2b1 E1− A1 B1− 2b∗1 E∗1 ,

N8 =
(
b2− b∗1 − 2b11

)
E∗1 − A4 B1− A1 B4

−
(
b2+ b∗1 − 2ib12

)
E∗2 + (b1+ b2) E3.

Without loss of generality, we set ε= 1, and we can write
the explicit form of analytic breather solutions as

ψ(ξ, τ )=
g(ξ, τ )
f (ξ, τ )

=
g1(ξ, τ )+ g3(ξ, τ )

1+ f2(ξ, τ )+ f4(ξ, τ )
, (15)

where g1(ξ, τ ), f2(ξ, τ ), g3(ξ, τ ), and f4(ξ, τ ) are defined in
expressions (11)–(14).

3. Discussions

By choosing the appropriate values in the analytic breather
solution (15), we can present breather profiles in nondimen-
sional form, as shown in figure 1. It is noted that we demon-
strate the existence of breathers in a HC-PCF analytically
for the first time. They have different periodicity properties
with different values of the parameters in solution (15). Their
energies are concentrated in a localized and oscillatory fashion,
and the breathers oscillate in both space and time. By changing
the values of k11 and k21, we can change the amplitude, period
and width of the breathers. In figure 1(b), the values of k11
and k21 are smaller than those in figure 1(a): the amplitude

and period of the breathers decrease while the breather width
is broadened.

The oscillating state and breather period can be controlled
by choosing different parameter values. When the sign of k21
is positive, such as k21 = 1 in figure 2, the breather period
decreases, and the oscillating state is weakened. Moreover, the
amplitude of the breathers decreases. Changing the value of
k11, we can also control the oscillating state. In figure 3, the
oscillating state of the breathers disappears when the value of
k11 decreases, such as for k11 =−20. The pulse shape looks
like the sech type, but the pulse front is steeper than a sech one.

In figures 1–3, we show the influences of k11 and k21.
k12 and k22 have an influence on the breather phase alone.
Next, the influences of b11, b12, b21 and b22 will be discussed.
By increasing the value of b11 or decreasing the value of b21
we can adjust the breathers in figure 4. The breather amplitude
decreases, the breather oscillation is enhanced and the breather
width is broadened. The breather amplitude oscillates with
large deviations. By increasing the values of b12 and b22 we can
amplify and compress the breathers as shown in figure 5. The
amplitude of breathers increases gradually, and the breathers
can be amplified. At the same time, the breather width becomes
narrow in figure 5(b) and the breathers are compressed. So our
work can be used to design laser systems for the generation of
high energy pulses, which are more conducive to generating a
supercontinuum.

By decreasing the value of β2 or increasing the value
of η the amplitude of the breathers can also be increased.

4
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Figure 3. Breather profiles for the analytic breather solution (15) to equation (1) with the same parameters as those given in figure 1(a), but
with k11 =−20.

Figure 4. Breather profiles for the analytic breather solution (15) to equation (1) with the same parameters as those given in figure 1(a) but
with b11 = 0.3.

Figure 5. Breather profiles for the analytic breather solution (15) to equation (1) with the same parameters as those given in figure 1(a) but
with b12 = 0.6.

In this case, the breather profiles are similar to those in
figure 4. That is, the group-velocity dispersion affects just the
breather amplitude. When the Raman resonant time constant
τR changes, such as τR = 5 in figure 6, the breather amplitude
decreases and there is an energy loss.

4. Conclusions

A class of localized nonlinear excitations, breathers, has been
obtained in HC-PCFs. The NLS equation (see equation (1)),
which can be used to describe the propagation of breathers in
HC-PCFs, has been investigated analytically. Using the Hirota
bilinear method and the auxiliary function method, an analytic
breather solution (15) with eight free parameters has been

presented. The characteristics of breathers have been discussed
in relation to special choices of these free parameters in the
solution (15). The following aspects should be noted:

(1) We demonstrate that the choice of parameters not only
controls the amplitude of breathers but also influences their
oscillating state and period. The amplitude, period and
oscillating state of breathers can be adjusted with k1 j ,k2 j
andb j1 (see figures 1–4). The group-velocity dispersion
β2 has an effect on breather amplitude.

(2) Breathers have been amplified and compressed with in-
creasing values of b12 andb22 (see figure 5). This amplifi-
cation mechanism can be used to obtain high energy pulses
and generate a supercontinuum in a HC-PCF.

5
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Figure 6. Breather profiles for the analytic breather solution (15) to equation (1) with the same parameters as those given in figure 1(a) but
with τR = 5.

(3) Decreasing the Raman resonant time constant τR can
effectively prevent energy loss, as shown in figure 6.

Our results may be useful for the application of
supercontinuum generation in laser systems and could also
be expected to be helpful in describing pulse propagation and
in relevant applications in nonlinear optics and BECs.

Acknowledgments

This work has been supported by the National Key Basic
Research Program of China (grant Nos 2012CB821304 and
2013CB922402), by the National Natural Science Founda-
tion of China (NSFC) (grant Nos 61205064, 61378040 and
11078022) and by the Fundamental Research Funds for the
Central Universities of China (grant No. 2012RC0706).

References

[1] Russell P St J 2003 Photonic crystal fibers Science 299 358–62
[2] Roberts P J et al 2005 Ultimate low loss of hollow-core

photonic crystal fibres Opt. Express 13 236–44
[3] Russell P St J 2006 Photonic-crystal fibers J. Lightwave

Technol. 24 4729–49
[4] Lebrun S, Delaye P and Roosen G 2007 Stimulated Raman

scattering in hollow core photonic crystal fibres Ann. Phys.
Fr. 32 45–51

[5] Arriaga J and Meneses B 2003 Band structure for the cladding
of a hollow core photonic crystal fibre Rev. Mex. Fis.
49 335–7

[6] Cregan R F, Mangan B J, Knight J C, Birks T A,
Russell P St J, Roberts P J and Allan D C 1999
Single-mode photonic band gap guidance of light in air
Science 285 1537–9

[7] Shinoj V K and Murukeshan V M 2011 Numerical
investigation and optimisation of hollow-core photonic
crystal fibre for optical trapping of fluorescent
microparticles Micro Nano Lett. 6 785–9

[8] Qian W W, Zhao C L, Wang Y P, Chan C C, Liu S J and
Jin W 2011 Partially liquid-filled hollow-core photonic
crystal fiber polarizer Opt. Lett. 36 3296–8

[9] Benabid F and Roberts P J 2011 Linear and nonlinear optical
properties of hollow core photonic crystal fiber J. Mod. Opt.
58 87–124

[10] Roberts P J, Williams D P, Sabert H, Mangan B J, Bird D M,
Birks T A, Knight J C and Russell P St J 2006 Design of
low-loss and highly birefringent hollow-core photonic
crystal fiber Opt. Express 14 7329–41

[11] Sun Q, Mao Q H, Liu E M, Rao R Z and Ming H 2008
Hollow-core photonic crystal fiber high-pressure gas cell
Proc. SPIE 7004 700455

[12] Heckl O H et al 2009 High harmonic generation in a gas-filled
hollow-core photonic crystal fiber Appl. Phys. B 97 369–73

[13] Pinto A M R, Baptista J M, Santos J L, Lopez-Amo M and
Frazão O 2012 Micro-displacement sensor based on a
hollow-core photonic crystal fiber Sensors 12 17497–503

[14] Saleh M F and Biancalana F 2011 Understanding the
dynamics of photoionization-induced nonlinear effects and
solitons in gas-filled hollow-core photonic crystal fibers
Phys. Rev. A 84 063838

[15] Saleh M F, Chang W, Hölzer P, Nazarkin A, Travers J C,
Joly N Y, Russell P St J and Biancalana F 2011 Theory of
photoionization-induced blueshift of ultrashort solitons in
gas-filled hollow-core photonic crystal fibers Phys. Rev.
Lett. 107 203902

[16] Agrawal G P 2007 Nonlinear Fiber Optics 4th edn
(San Diego, CA: Academic)

[17] Serebryannikov E E and Zheltikov A M 2007
Ionization-induced effects in the soliton dynamics of
high-peak-power femtosecond pulses in hollow
photonic-crystal fibers Phys. Rev. A 76 013820

[18] Liu W J, Tian B, Zhen H L and Jiang Y 2012 Analytic study
on solitons in gas-filled hollow-core photonic crystal fibers
Europhys. Lett. 100 64003

[19] Bang O and Peyrard M 1995 High order breather solutions to a
discrete nonlinear Klein–Gordon model Physica D 81 9–22

[20] Liu W J, Tian B, Zhang H Q, Xu T and Li H 2009 Solitary
wave pulses in optical fibers with normal dispersion and
higher-order effects Phys. Rev. A 79 063810

[21] Liu W J, Tian B, Zhang H Q, Li L L and Xue Y S 2008
Soliton interaction in the higher-order nonlinear
Schrödinger equation investigated with Hirota’s bilinear
method Phys. Rev. E 77 066605

[22] Liu W J, Tian B and Zhang H Q 2008 Types of solutions of the
variable-coefficient nonlinear Schrödinger equation with
symbolic computation Phys. Rev. E 78 066613

[23] Liu W J, Tian B, Xu T, Sun K and Jiang Y 2010 Bright and
dark solitons in the normal dispersion regime of
inhomogeneous optical fibers: soliton interaction and
soliton control Ann. Phys. 325 1633–43

[24] Hirota R 1971 Exact solution of the Korteweg–de Vries
equation for multiple collisions of solitons Phys. Rev. Lett.
27 1192–4

6

http://dx.doi.org/10.1126/science.1079280
http://dx.doi.org/10.1126/science.1079280
http://dx.doi.org/10.1364/OPEX.13.000236
http://dx.doi.org/10.1364/OPEX.13.000236
http://dx.doi.org/10.1109/JLT.2006.885258
http://dx.doi.org/10.1109/JLT.2006.885258
http://dx.doi.org/10.1051/anphys:2008005
http://dx.doi.org/10.1051/anphys:2008005
http://dx.doi.org/10.1126/science.285.5433.1537
http://dx.doi.org/10.1126/science.285.5433.1537
http://dx.doi.org/10.1049/mnl.2011.0429
http://dx.doi.org/10.1049/mnl.2011.0429
http://dx.doi.org/10.1364/OL.36.003296
http://dx.doi.org/10.1364/OL.36.003296
http://dx.doi.org/10.1080/09500340.2010.543706
http://dx.doi.org/10.1080/09500340.2010.543706
http://dx.doi.org/10.1364/OE.14.007329
http://dx.doi.org/10.1364/OE.14.007329
http://dx.doi.org/10.1007/s00340-009-3771-x
http://dx.doi.org/10.1007/s00340-009-3771-x
http://dx.doi.org/10.3390/s121217497
http://dx.doi.org/10.3390/s121217497
http://dx.doi.org/10.1103/PhysRevA.84.063838
http://dx.doi.org/10.1103/PhysRevA.84.063838
http://dx.doi.org/10.1103/PhysRevLett.107.203902
http://dx.doi.org/10.1103/PhysRevLett.107.203902
http://dx.doi.org/10.1103/PhysRevA.76.013820
http://dx.doi.org/10.1103/PhysRevA.76.013820
http://dx.doi.org/10.1209/0295-5075/100/64003
http://dx.doi.org/10.1209/0295-5075/100/64003
http://dx.doi.org/10.1016/0167-2789(94)00202-2
http://dx.doi.org/10.1016/0167-2789(94)00202-2
http://dx.doi.org/10.1103/PhysRevA.79.063810
http://dx.doi.org/10.1103/PhysRevA.79.063810
http://dx.doi.org/10.1103/PhysRevE.77.066605
http://dx.doi.org/10.1103/PhysRevE.77.066605
http://dx.doi.org/10.1103/PhysRevE.78.066613
http://dx.doi.org/10.1103/PhysRevE.78.066613
http://dx.doi.org/10.1016/j.aop.2010.02.012
http://dx.doi.org/10.1016/j.aop.2010.02.012
http://dx.doi.org/10.1103/PhysRevLett.27.1192
http://dx.doi.org/10.1103/PhysRevLett.27.1192

	Breathers in a hollow-core photonic crystal fiber
	Introduction
	Bilinear forms and analytic breather solutions for equation (1)
	Discussions
	Conclusions
	Acknowledgments
	References


