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A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal
Yb:YCasO(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. Pumped by a
976-nm fiber-coupled diode laser with 50-um core diameter, stable mode-locked laser pulses up to 430 mW were obtained
at a repetition rate of 83.61 MHz under 5-W pump power. The autocorrelation measurement shows that the pulse duration
is as short as 150 fs by assuming the sech? pulse shape at a central wavelength of 1048 nm. This work has demonstrated a
compact and reliable femtosecond laser source for prospective low-cost applications.
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1. Introduction

Ultrafast lasers with a directly diode-pumped scheme
have attracted continuous interest due to their high energy
In the
last decade, remarkable progress has been made with a se-

conversion efficiency, compact size, and low cost.

ries of new solid state hosts!' ! as gain media. Among these
hosts, the trivalent ytterbium ion (Yb3*) has been recognized
as one of the best dopants for efficient diode-pumped lasers
because Yb>*-doping materials have many advantages, such
as broad emission bands and less quantum defects. Yb3*-
doped materials have been recognized as promising substi-
tutes for all solid-state ultrafast lasers in the 1000-nm range
with direct diode-pump instead of Ti:sapphire crystal. Ex-
tensive mode-locking has been reported on various of Yb>*-
materials, such as garnet Yb:YAG*>! and Yb:YGG,!®! vana-
date Yb:YVO4,[" oxyorthosilicates Yb:GYSO,’! tungstates
Yb:KGW!% and Yb:KYW, '] fluorite Yb:YLF, %! sesquiox-
ide Yb:Sc,03,!"¥ silicate Yb:SYS,!*! borates Yb:GdCOB!!?!
and Yb:BOYS,!'% etc.

Yb3+-doped YCasO(BO3)3 (Yb:YCOB) is a non-
centrosymmetric biaxial crystal. It exhibits a large ground
state splitting of 1000 cm™! of the ground state manifold
(*F72), which is greater than other Yb-doped materials.!'"~"]
This is desirable for efficient room temperature laser opera-
tion. Yb:YCOB in thin disk laser design can produce out-
put power as high as 100 W in the continuous-wave (CW)
regime with a slope efficiency of 53%!?°! and tunable range
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from 997 nm to 1092 nm.?!! All polarization configurations in
Yb:YCOB have been thoroughly compared with longitudinal
pumping in the cw regime, achieving in the best cases maxi-
mum output power of 7.3 W and a slope efficiency 83%.1>*!
The fluorescence lifetime was measured to be 2.20 ms,[?!]
which is one of the longest upper state lifetimes observed for

U7 The broad emission bandwidth

Yb-doped oxide crystals.
supports the possible generation of ultrashort pulses. The first
mode-locked Yb:YCOB laser delivered a modest pulse dura-
tion of 210 fs.[>3] Recently, 42-fs pulses have been generated
in a Yb:YCOB crystal,[**! with external compression pluses
as short as 35 fs were reported at 1055 nm.[>! However, such
short pulse duration relies on critical cavity alignment with the
assistance of the Kerr-lens effect. As a result, the average out-
put power is limited to tens of mW and its mode-locking is not
reliably self-starting.

In this paper, a new experimental investigation is carried
out based on the mode-locking of Yb:YCOB laser with a semi-
conductor saturable absorber mirror (SESAM). By precisely
adjusting the cavity dispersion, pulses as short as 150 fs were
produced with bandwidth of 9.6 nm at 1048 nm and the av-
erage output power was 430 mW with a slope efficiency of
21.3%.

2. Experimental arrangement

A high quality Yb:YCOB crystal was grown by the
Czochralski method, with a Yb concentration of 20 at.%. The

*Project supported by the National Natural Science Foundation of China (Grant No. 61205130), the National Key Scientific Instruments Development Pro-
gram of China (Grant No. 2012YQ120047), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant
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uncoated Yb:YCOB crystal was cut along the X axis with
thickness of 2 mm and an aperture of 3 mm x 3 mm. To reduce
the thermal load occurring inside the crystal, the Yb:YCOB
crystal was wrapped with an indium foil and then mounted
tightly in a water-cooled copper heat sink. The water temper-
ature was maintained at 14 °C. A 7-W high-brightness fiber-
coupled diode laser emitting at 976 nm (Jenoptik, JOLD-7.5-
BAFC-105) was used to end pump the laser medium. The
pump-laser output from the fiber (with 50-um core diameter
and 0.22 NA ) was coupled into the crystal by a coupling sys-
tem with a magnification of 0.8. We first characterized the
crystal in CW operation. Figure 1(a) shows the overall experi-
mental setup. The crystal was positioned at Brewster angle in
the middle of an astigmatism compensated cavity between two
curved mirrors with 200-mm radius of curvature (ROC). M1
was a plane dichroic mirror with high transmission at 976 nm
and high reflection at 1020-1200 nm. An output coupler (OC)
with transmission of 2.5% in the range of 1020—1200 nm was
used for coupling the laser. We obtained the highest CW out-
put power of 2 W under the pump power of 5 W. With a SF6
prism inserted into the cavity, we implemented a tunable laser
wavelength from 1007-1100 nm, indicating a tunable range of
about 93 nm. The tuning curve is shown in Fig. 2. The tuning
wavelength beyond 1100 nm is restricted by the spectrome-
ter used in our experiment. The broad tuning range of the
Yb:YCOB crystal gives it a potential to generate very short
pulses with a duration comparable to the conventional prism

et

pair-based Ti:sapphire oscillator.
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Fig. 1. (color online) Experimental setups used to study the (a) CW and (b)
mode-locking operation of the Yb:YCOB laser. M1: dichroic mirror; M2,
M3, M4: concave mirrors (M2, M3 with ROC of 200 mm; M4 with ROC
of 300 mm); HR: high reflection mirror; OC1, OC2: plane output cou-
pler with transmission 7 = 2.5% and T = 0.8%, respectively; SESAM:
semiconductor saturable absorber mirror.

The mode-locking experiment was carried out with a

modified confocal cavity, as shown in Fig. 1(b). In one arm of

the cavity, an additional folding was incorporated to increase
the fluence on the SESAM by means of a ROC = 300 mm
curved mirror. The relaxation time of the SESAM used in the
experiment was less than 500 fs and the modulation depth was
specified to be 0.5%. In the other arm of the cavity, a pair of
SF6 prisms with a tip-to-tip distance of about 310 mm were
used to compensate the normal dispersion resulted from the
crystal inside the cavity. The OC with transmission of 0.8% in
the range of 1020-1200 nm was used.
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Fig. 2. Wavelength tuning curve of the Yb:YCOB laser with a 2.5%
OC under the pump power of 2.5 W.

3. Results and discussion

The Yb:YCOB crystal was oriented along E//Y polariza-
tion. With optimization of the cavity alignment and chirp com-
pensation, stable mode-locking operation with single-mode
output was self-starting when the incident pump power ex-
ceeded 2 W. The maximum output power was 430 mW under
a pump power of 5 W. Figure 3 shows the stable CW mode-
locked pulse train detected by a fast photodiode and recorded
with a digital storage oscilloscope.

Using a commercial intensity autocorrelator (APE:
pulseCheck USB), we measured the intensity autocorrelation
trace that is shown in Fig. 4(a). Assuming a sech?-pulse shape,
the pulse duration is 150 fs. Its corresponding pulse spec-
trum in Fig. 4(b) has a full width at half maximum (FWHM)
bandwidth of 9.6 nm. The time-bandwidth-product of 0.393
is close to the Fourier transform limitation (0.315), indicating
less residual chirp within the mode-locking.

Figure 5 shows the corresponding radio frequency spec-
trum of the fundamental beat note at 83.61 MHz, which was
recorded by a spectrum analyzer (Agilent: E4402B) with a res-
olution bandwidth (RBW) of 1 kHz measured for the shortest
pulse operation. The high extinction down to 68 dBc and the
absence of any spurious modulation prove a stable and clean
CW mode-locked operation of the Yb:YCOB laser.

054207-2



Chin. Phys. B Vol. 23, No. 5 (2014) 054207

(b)

'\l \H IR

|
I
|

1\!‘41 u"wl 1ﬁ-l-,_| ( ‘h—’Hl l‘t;hg / L“["‘Y

'ill\HHHM \ EH\

!HHI

Fig. 3. (color online) Mode-locked pulse train at (a) 20 ns/div and

(b) 200 ns/div.
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Fig. 4. (color online) (a) Autocorrelation trace of the mode-locked
pulses (dotted-curve) with a sech? fitting (solid curve). (b) Spec-
trum of the mode-locked pulses.
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Fig. 5. Radio frequency spectrum of the mode-locked Yb:YCOB
laser with RBW of 1 kHz.

4. Conclusion

We have achieved a stable self-starting mode-locking of
the Yb:YCOB laser with a SESAM. The output pulse duration
is as short as 150 fs at the central wavelength of 1048 nm and a
spectral bandwidth of 9.6 nm. The average power is 430 mW
under 5-W pump, with a slope efficiency of 21.3%. The broad
wavelength tunability of Yb:YCOB crystal indicates that it
is a promising gain medium for sub-100 fs pulse generation
by further optimization of the cavity dispersion compensation.
Furthermore, owing to the birefringent property of Yb:YCOB
crystal, it is possible to generate green femtosecond pulses by

means of self-frequency doubling.
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