Fabrication of GaN hexagonal cones by inductively coupled plasma reactive ion etching

Zhe Liu, Yujin Wang, Xiaoxiang Xia, Haifang Yang, Junjie Li, and Changzhi Gu

Citation: Journal of Vacuum Science & Technology B 34, 041226 (2016); doi: 10.1116/1.4954986
View online: http://dx.doi.org/10.1116/1.4954986
View Table of Contents: http://scitation.aip.org/content/avs/journal/jvstb/34/4?ver=pdfo

Published by the AVS: Science & Technology of Materials, Interfaces, and Processing

Articles you may be interested in
Inductively coupled plasma–reactive ion etching of c- and a-plane AlGaN over the entire Al composition range: Effect of BCl3 pretreatment in Cl2/Ar plasma chemistry
J. Vac. Sci. Technol. A 31, 061305 (2013); 10.1116/1.4818871

Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH4 / H2 / Ar plasma on the ZnO/GaN heterojunction light emitting diodes
J. Vac. Sci. Technol. A 28, 745 (2010); 10.1116/1.3357282

Plasma-induced damage study for n-GaN using inductively coupled plasma reactive ion etching
J. Vac. Sci. Technol. B 19, 2926 (2001); 10.1116/1.1418415

Inductively coupled plasma reactive ion etching of AlxGa1−xN for application in laser facet formation
J. Vac. Sci. Technol. B 17, 2750 (1999); 10.1116/1.591057

Patterning of cubic and hexagonal GaN by Cl2/N2 -based reactive ion etching
Appl. Phys. Lett. 74, 3471 (1999); 10.1063/1.124131
Fabrication of GaN hexagonal cones by inductively coupled plasma reactive ion etching

Zhe Liu, Yujin Wang, Xiaoxiang Xia, Haifang Yang,a) and Junjie Li
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
Changzhi Gub)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China and Collaborative Innovation Center of Quantum Matter, Beijing 200092, China

(Received 20 February 2016; accepted 10 June 2016; published 29 June 2016)

There is a growing demand for the patterning of gallium nitride for light extraction/absorption to improve the performance of photoelectric devices. In this paper, hexagonal cones were fabricated on Ga-polar GaN substrates using the inductively coupled plasma reactive ion etching method. It was found that the etch rate of different crystal faces could be altered by changing the ratio of BCl3 to Cl2 in the reactive gas mixture, which enabled hexagonal cone structures to be fabricated on the wurtzite GaN crystal. The mechanism of the GaN hexagonal cone formation was analyzed based on physical sputtering and chemical reaction, wherein the physical sputtering by heavy radicals assisted the bond breaking and the chemical erosion by Cl radicals that preferentially etched specific crystal planes. The hexagonal cones can be used on light-emitting diodes, photovoltaic devices, and for site control of quantum dots. © 2016 American Vacuum Society.

[http://dx.doi.org/10.1116/1.4954986]

I. INTRODUCTION

Gallium nitride (GaN) plays an important role in the field of photoelectronic devices such as light-emitting diodes (LEDs), laser diodes, and ultraviolet photodetectors, as well as electronic devices such as field effect transistors. This usefulness of GaN is owing to its large, direct bandgap, excellent light absorbing and emitting properties, and high thermal conductivity. GaN-based LEDs are one of the most promising solid-state lighting devices, exhibiting the advantages of stable long term light emitting performance, energy saving, and long lifetime. However, to achieve high quantum efficiency in the LEDs, planar surfaces need to be avoided to reduce the total internal reflection. Therefore, nanostructures such as semispheres, photonic crystals, and cones on the surface of LEDs have been widely used to improve the light extraction efficiency (LEE). These structures can be obtained by either wet etching or dry etching methods.

Wet etching can be used to fabricate conelike structures on (0001) GaN because of the occurrence of selective etching on specific crystal planes. These cones are hexagonally shaped with sixfold-symmetry, and the taper angle has a fixed value of 58.4°. The cone density is comparable to the dislocation density of GaN, and the arrangement of the cones is random and irregular. In contrast, dry etching mainly using inductively coupled plasma reactive ion etching (ICP-RIE) is typically insensitive to the crystalline structure and can provide more varieties of patterns such as hole and pillar structures with upright edges or cones with oblique sidewalls. Further, the arrangement of these structures can be designed, and the tilt level of the sidewalls can be changed.

Until now, circular cones have been fabricated by ICP-RIE while hexagonal cones have only been fabricated by the wet etching process, and have been randomly arranged on N-polar (0001) GaN (Ref. 8) or with selective area growth on nucleation layers. Pyramidalike structures on LEDs have been theoretically proven to greatly increase the LEE using numerical simulations. Furthermore, in addition to improving the LEE on LEDs, hexagonal cones can also be used for photovoltaic devices or site control of quantum dots.

In this paper, we demonstrate that hexagonal cones can be fabricated by dry etching with ICP-RIE on Ga-polar (0001) GaN. By changing the ratio of BCl3 to Cl2 in the mixed reactive gas, the side wall of the cones can be modified from upright to oblique, indicating that the etching effect can be either isotropic or anisotropic. The study shows that, in the etching process, both physical sputtering and chemical etching effects are involved, and the weight of these effects can be controlled by the gas ratio. This provides an easy way to fabricate circular and hexagonal structures on wurtzite GaN.

II. EXPERIMENTAL DETAILS

A schematic of the fabrication process of the GaN hexagonal cones is shown in Fig. 1, wherein a Ga-polar GaN layer about 4 μm thick was grown on a sapphire substrate by metal-organic chemical vapor deposition. After being cleaned with acetone, alcohol, and deionized water, the samples were spin-coated with poly(methyl methacrylate) (PMMA) resist. Subsequently, a hexagonal array of circular holes was formed in the PMMA by electron beam lithography and development [Fig. 1(a)]. Chromium was then evaporated onto the samples [Fig. 1(b)], followed by acetone.
lift-off, to form an array of circular Cr dots for the mask on the GaN [Fig. 1(c)]. Then, a dry etching process was performed in the ICP-RIE system (Oxford Plasmalab System 100 ICP 180) with a mixed reactive gas of BCl3 and Cl2 to create GaN cone structures [Fig. 1(d)], and a silicon load wafer was used as the sample holder. In the etching process, the ratio of BCl3:Cl2 was altered to obtain hexagonal GaN cones, as shown in the scanning electron microscope (SEM) images (Helios 600i, FEI) in Figs. 1(e) and 1(f). The pattern was over-etched during the etching process, wherein the operating pressure was 7 mTorr, the radio-frequency (RF) power was 75 W, the ICP power was 300 W, and the temperature was kept at 30°C.

III. RESULTS AND DISCUSSION

A. Reactive gas ratio-related etch rate

During the GaN etching process with BCl3 and Cl2 by ICP-RIE, the active ions in the chamber are mainly Cl+, Cl2+, and BCl2+ dissociated from Cl2 and BCl3, as well as SiCl+ and SiCl3+ ions that derive from the reaction between Cl2 and the Si load wafer.19 Two effects are involved in the process, comprising a chemical etching effect and a physical sputtering effect. The chemical etching effect mainly arises from the interaction between the Ga in the GaN and Cl from the Cl2 gas. The physical sputtering effect, on the other hand, is caused by the bombardment of the heavy BCl2+ ions. The etch rate of both processes is related to the energy and density of the ions, which are both highly correlated to the direct current (DC) bias that is generated by the electrons gathered on the electrodes as a result of the RF power.

The etch rate and the DC bias are given in Fig. 2(a) as a function of the BCl3:Cl2 ratio. By increasing the proportion of Cl2 from 1/6 to 5/6, the GaN etch rate increases from 68 nm/min while the DC bias decreases slightly. The dominating effect is the chemical etching of the Ga in the GaN by the Cl from the Cl2 and BCl3 gases.12,13 When the proportion of Cl2 is 5/6, Cl+ and Cl2+ ions are dominant in the chamber19 and chemical etching plays the leading role. At this ratio, the DC bias is slightly smaller with fewer13 and lower energy ions, while the etch rate remains high because of the existence of Cl+ ions. As the proportion of BCl3 goes up, the DC bias increases (increasing the energy of the ions) as the density of BCl2+ increases.12,19,20 However, the density of the Cl+ decreases,12,19,20 thus lowering the chemical etching effect and the etch rate of GaN.

The SEM images in Figs. 2(b)–2(d) reveal that the shape of the cones changes with the gas ratio, though the etching times were varied to ensure the same etching depth. The images show that when BCl3 is predominant, cones with oblique sidewalls are fabricated [Fig. 2(b)]. By increasing the Cl2 proportion to 50%, the sidewalls become less oblique and edges appear at the bottom of the cones while the top of cones remain round [Fig. 2(c)]. By further increasing the Cl2 proportion to 5/6, the sidewalls become vertical with more obvious six-fold-symmetry edges [Fig. 2(d)].

B. Formation of hexagonal cones

To observe the sixfold symmetry of the GaN cones more clearly, thinner masks and longer etching times were used to obtain over-etched structures. Figure 3 shows the over-etched results producing GaN cones with an intercone period of 1.5 μm etched with different ratios of BCl3:Cl2. When BCl3:Cl2 = 5:1, circular truncated cones were formed in accordance with the circular Cr masks. As the proportion of Cl2 was increased, six edges gradually appeared and the faces between the two edges changed gradually from a curved surface to a flat surface. Finally, when the Cl2...
proportion reached 5/6, hexagonal cones were formed with well-defined sixfold sidewalls. It is obvious that after the masks were depleted, specific planes were selectively etched and hexagonal truncated cones were thus achieved.

It should be noticed that the mask on the GaN is a hexagonal array and has the same symmetry as the hexagonal cones. To examine the possibility that adjacent structures may affect the shape of the cones, including charging effects or the gas flow pattern on the target surface, rectangularly arranged structures were also fabricated and are shown in Fig. 4. The Cr masks were arranged rectangularly to avoid sixfold symmetry, but the resulting cones also seem to possess sixfold symmetry, and from the top view in Figs. 4(c) and 4(d), it is obvious that the cones have a hexagonal shape. This proves that the formation of hexagonal cones has nothing to do with the packing pattern of the mask.

C. Mechanism of hexagonal cone formation

Because the GaN is a wurtzite crystal with sixfold symmetry [shown in Fig. 5(a)], the hexagonal cone shape should therefore be related to the hexagonal close-packed lattice structure by the anisotropy of etching. In GaN, the (1011) plane has the lowest surface energy and was therefore etched preferentially in the chemical etching process compared to the (0001) plane, and was exposed outmost after etching. This explains how the hexagonal GaN cones are formed by wet etching in a KOH solution. However, in a dry etching process, the situation is quite different. In the plasma
of the dry etching process, the GaN material is simultaneously exposed to a chemical reaction by the Cl radical and to bombardment by heavy radicals. The proportion between these two effects changes with the gas ratio, which determines the final profile of the GaN structures.

The bombardment by heavy radicals contributes to GaN etching in two ways. First, the physical sputtering effect\(^\text{12,19}\) is isotropic to the crystal and is only related to the ion incident angle, ion energy, and the species of incident/target atoms.\(^\text{21}\) Second, the bombardment helps to break the bond between Ga and N, as shown in Fig. 5(b), which speeds up the chemical etching process.

When the \(\text{BCl}_3\) proportion is 5/6, the primary ions in the plasma are \(\text{BCl}_2^+\) and \(\text{SiCl}_2^+\).\(^\text{19}\) The predominance of these heavy radicals in the chamber leads to isotropic etching of GaN and forms circular cones with oblique sidewalls. As the proportion of \(\text{Cl}_2\) increases, the amount of \(\text{BCl}_2^+\) in the plasma decreases and that of \(\text{Cl}^+\) and \(\text{Cl}_2^+\) increases; thus, the physical sputtering effect is weakened while the assisted bond-breaking effect is still present. This sputtering assists the chemical etching process, which selectively etches the \((10\overline{1}1)\) plane. When the \(\text{Cl}_2\) proportion is 5/6, very few \(\text{BCl}_2^+\) radicals\(^\text{12,19}\) exist in the chamber, so the dominant effect is chemical etching and heavy radical-assisted bond breaking in the chamber. Therefore, the \((10\overline{1}1)\) plane gradually appears at the outmost edge and leads to the hexagonal cone structures.

To verify this point of view, we examined the DC bias and etch rate of GaN as a function of RF power in the conditions of the two gas ratios 5:1 and 1:5, as shown in Fig. 5(c). For a certain RF power, the DC bias is essentially the same for the different gas ratios, which indicates the same ion energy. The etch rates increase rapidly with RF power for both gas ratios. When \(\text{BCl}_3:\text{Cl}_2\) = 5:1, the increase in the etch rate with the RF power is reasonable owing to the nature of the physical sputtering. However, when \(\text{BCl}_3:\text{Cl}_2\) = 1:5, the increase in the etch rate with the RF power exhibits its characteristics not typical of chemical etching. In a pure chemical etching process, the etch rate should be almost independent of the DC bias.\(^\text{22}\) Here, however, the RF power-dependent etch rate indicates that the ion energy plays an important role in the etching process. Because there are very few heavy radicals \(\text{BCl}_2^+\) and \(\text{SiCl}_2^+\) in the chamber, the physical sputtering effect is much smaller compared to that of gas ratio = 5:1, and the heavy radical-assisted bond-breaking is dominant.

It should be noted that when the reactive gas is pure \(\text{Cl}_2\), the etch rate of GaN is 150 nm/min (data not shown), which is smaller than the 178 nm/min rate found with 5/6 \(\text{Cl}_2\). This difference is because no \(\text{BCl}_2^+\) radicals are in the chamber with pure \(\text{Cl}_2\), and only a few \(\text{SiCl}^+\) and \(\text{SiCl}_2^+\) ions exist from the interaction between \(\text{Cl}_2\) and Si wafer.\(^\text{19}\) This lack of heavy radicals weakens the assisted bond-breaking effect and finally reduces the etch rate of GaN.

IV. CONCLUSION
We presented a new ICP-RIE process for the fabrication of well-organized GaN hexagonal cones. By changing the \(\text{BCl}_3:\text{Cl}_2\) ratio of the active gas, the chemical etching and physical sputtering effect could be controlled to make the sidewall of GaN cones either vertical or oblique. Hexagonal cones were formed because of the anisotropic etching on different planes of the GaN crystal, whereupon the \((10\overline{1}1)\) plane was left on the surface of the structure. This technique showed good controllability for the sidewall oblique angle and surface profile and was homogeneous in a large area, which has great potential for light emitting enhancement of LEDs, light absorption for photovoltaic devices, and site control of quantum dots.

ACKNOWLEDGMENTS
This work was supported by the National Basic Research Program of China (Grant No. 2009CB930502) and National Natural Science Foundation of China (Grants Nos. 91323304, 11504414, 11174362, 61390503, 11574369 and 11434017) and the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2EW02 and XDB07020200).