Crossover behaviors in magnetoresistance oscillations for Nb thin film with rectangular arrays of antidots

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2012 EPL 99 37006

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 159.226.36.113
The article was downloaded on 09/09/2012 at 04:37

Please note that terms and conditions apply.
Crossover behaviors in magneto-resistance oscillations for Nb thin film with rectangular arrays of antidots

W. J. Zhang1(a), S. K. He1, H. F. Liu1, G. M. Xue1, H. Xiao1, B. H. Li1, Z. C. Wen1, X. F. Han1, S. P. Zhao1, C. Z. Gu1, X. G. Qiu1(b) and Victor V. Moshchalkov2

1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
P. O. Box 603, Beijing 100190, PRC
2 INPAC-Institute for Nanoscale Physics and Chemistry, KU Leuven - Celestijnenlaan 200D, B-3001 Leuven, Belgium, EU

received 18 April 2012; accepted in final form 8 July 2012
published online 8 August 2012

PACS 74.78.Na – Mesoscopic and nanoscale systems
PACS 74.81.Fa – Josephson junction arrays and wire networks
PACS 74.25.F – Transport properties

Abstract – Superconducting Nb thin films with rectangular arrays of submicron antidots (holes) have been systematically investigated by transport measurements. A series of crossover behaviors is found in magneto-resistance oscillations, corresponding to three different superconducting states: the wire network-like state, the interstitial vortex state and the single-loop–like state. These states are identified by the field intervals and hysteretic effect. The crossover fields between them are found to be both temperature and geometry dependent. Furthermore, in dense arrays, the saturation number is distinctly larger than the theoretical calculation for a single insulating inclusion. Our results indicate that in the process of magnetic field penetration into nanostructured superconductors, the order parameters are strongly modulated and finally localized near the edges, resulting in changes of oscillation modes.

Copyright © EPLA, 2012

Introduction. – Experiments on nanostructured superconductors with dimensions comparable to the superconducting characteristic length scales have demonstrated that the sample topology strongly influences the superconducting properties, such as the phase boundary $T_c(H)$, the magneto-resistance $R(H)$, and the field-dependent critical current $I_c(H)$ [1–3]. Various topologies (single loops [1,3], large infinite networks [4], and arrays of antidots [5,6]) have been studied both experimentally and theoretically.

In a perpendicular magnetic field, a localized superconducting state can first nucleate near the edge of the samples within a thin layer of width $W_s \sim \xi(T)$, similar to the nucleation of surface superconductivity [7,8]. The so-called edge superconducting state (surface state) [9,10] has an enhanced critical field $H_{c3}(T)$. The enhancement of $H_{c3}(T)$ above the bulk critical field $H_{c2}(T)$ greatly depends on the curvature of the superconducting/normal interface and the surface-to-volume ratio [5,11]. Much higher enhancement of the ratio H_{c3}/H_{c2} up to 3.6 has been observed in Pb thin film with a dense square antidot lattice [11].

For the square arrays of antidots, when the narrowest separation ΔW between neighboring holes is smaller than a critical value $1.84\xi(T)$ [7], nucleation is dominated by the thin wire-like surface states and by the coupling between them. This kind of arrays is well described by the formalism of superconducting wire networks [12,13]. The oscillations of $T_c(H)$ or $R(H)$ in such array are known as collective oscillations or network-like oscillations, whose period is corresponding to the area of the unit cell [4]. As shown by Bezryadin and Pannetier [5], when the magnetic field is high enough, a crossover behavior in the $T_c(H)$ curve from collective oscillations to single-loop–like (“single object”) oscillations occurs. The period of the single-loop–like oscillations is determined by the effective area S_{eff} of screening supercurrents,

$$\Phi_0 = \Delta H S_{eff},$$

where $\Phi_0 = h/2e = 20.7 \text{ G f} \mu \text{m}^2$ is the flux quantum; ΔH is the period (field interval) of oscillations. Due to the
decrease of W_c with increasing magnetic field, the single-loop-like oscillations are non-periodic.

In perforated samples, Abrikosov (interstitial) vortices can appear in the large superconducting segments between the holes, which have been confirmed by imaging techniques [9,10,14,15]. For rectangular arrays of antidots, the interstitial vortices are preferred to reside in wide stripes along the long side when the magnetic field is high enough. Thus, an extra interstitial vortex crossover behavior will be involved in rectangular arrays, in contrast to the one found in the square arrays of antidots [5,6,9].

In this paper, we have performed detailed systematic transport measurements on the rectangular arrays of antidots with various aspect ratios. These arrays are characterized by the following features: 1) separation ΔW (~ 50 nm) of the short side a is smaller than $\xi(T)$; 2) ΔW of the long side b is larger than $4\xi(T)$. We observe successive crossover behaviors from the network-like state to the single-loop-like state, as the magnetic field increases. The hysteretic effect is found for the interstitial vortex state. The crossover fields are strongly dependent on temperature, hole size, and the aspect ratio of the unit cell.

Experiments. – Nb thin films with a thickness of about 100 nm were deposited on SiO$_2$(300 nm)/Si substrates by magnetron sputtering. The critical temperature T_c of the Nb films is 8.910 K, and the superconducting transition width is about 21 mK (10%–90% criterion), where R_n is the normal state resistance at 9 K. For standard transport measurements, four-probe microbridges were fabricated on the Nb films with ultraviolet photolithography and etched by reactive ion etching (RIE) in O$_2$ and SF$_6$ plasmas. The patterned Nb films were then spun with polymethyl metacrylate (PMMA) and baked at 170 °C for 1 minute. Arrays of circular antidots were written in the central regions (60 μm × 60 μm) of the Nb microbridges by electron beam lithography on PMMA resist. The exposed Nb films were developed in MIBK : IPA (1:3) solution for 40 seconds. Finally, the samples were etched by RIE again and unexposed PMMA was removed in acetone. Note that one of the Nb microbridges was intentionally unexposed and used as a reference.

Figure 1 shows scanning electron microscope (SEM) and atomic force microscope (AFM) images for sample S1, with a rectangular unit cell of 800 nm × 1200 nm, and a hole radius $r_h = 375$ nm. The narrowest separation ΔW between neighboring holes along the X-direction is 50 nm. The images show that the overall periodicity is maintained very well. Sharp edges are obtained after etching.

The measurements were performed in Physical Properties Measurement System (PPMS-14, Quantum Design Inc.). Phase lock-in amplifiers (SR830) were used for ac currents applied at a frequency of 30.9 Hz. The current was parallel to the long side of the rectangular unit cell (the Y-direction). The applied magnetic field was perpendicular to the film surface. We swept the magnetic field with a step of 0.4 Oe in the low-field regime and 1 Oe in the high-field regime. The temperature stability was better than 2 mK during the measurements. The superconducting coherence length $\xi(0)$ is 11.3 nm, and is determined by measuring the $T_c(H)$ of the reference Nb microbridge [16]:

$$H_{c2} = \frac{\Phi_0}{2\pi \xi^2(0)} \left(1 - \frac{T}{T_c} \right).$$

The penetration depth $\lambda(0)$ is 72.0 nm, derived from the dirty limit ($l < \xi_0$) expressions [17]:

$$\lambda(0) = 0.85 \times 0.64 \lambda_L(0)/\xi(0),$$

where $\xi(0) = 38$ nm is the BCS coherence length, and $\lambda_L = 39$ nm is the London penetration depth. Thus, we have $\xi(t = 0.990) = 113$ nm, $\lambda_{eff}(t = 0.990) \approx \lambda^2(t)/d = 1315.6$ nm, where $t = T/T_c$, is the reduced temperature, and $d = 100$ nm is the thickness of thin film.

Results and discussion. –

Magnetoresistance and hysteretic effect. The field-dependent $R(H)$ curve for S1 (800 × 1200, $r_h = 375$ nm) at $T = 8.640$ K and current $I = 30$ μA is given in fig. 2(a).

The T_c of S1 is 8.702 K (50% R_n criterion). Due to the well-defined shape of the dips, we could accurately determine the field intervals ΔH between two consecutive dips (minima). Figure 2(b) shows ΔH as a function of the index number N for S1, at the same temperature $T = 8.640$ K. The notation N is a sequence number of dips relative to the one at zero field, which is marked as $N = 0$. The horizontal dashed lines (bottom to top) indicate the average field intervals $\overline{\Delta H}$ in region I, II and III: $20.8 ± 0.5$ Oe, $34.9 ± 1$ Oe, and $38.1 ± 1$ Oe. Thus, three different regimes of the $R(H)$ curve can be distinguished by ΔH: the low-field (region 1), the intermediate-field (region II), and the high-field (region III) regimes. It is found that $\overline{\Delta H}$ in the three regions increases with the field. In fig. 2(a), the crossover fields are indicated by the downward arrows at $H_2 = 125$ Oe and $H_3 = 352$ Oe. It should be noted that, ΔH at $N = 7$ has a value close to the ones in region I, but it belongs to region II. It is related to the formation of the first interstitial vortex in the center of each unit cell.

In the low-field regime ($H < H_3$), $\overline{\Delta H} = 20.8 ± 0.5$ Oe is relevant to one flux quantum per unit cell. It slightly

Fig. 1: (Color online) SEM and AFM images of a rectangular antidot lattice (sample S1), with a unit cell of $a \times b$ (800 nm × 1200 nm). The hole (antidot) radius is 375 nm and the distance between the centers of the holes is 800 nm, resulting in a width ΔW of the narrowest part of the constriction of 50 nm. The dashed rectangle indicates a unit cell.
The dashed horizontal lines indicate the average values of the field interval ΔH as a function of the index number N. The dashed vertical lines indicate the crossover fields H_S and H_D. Inset of (a): enlarged plot of the low-field regime. The segmentation of magnetic fluxes are indicated with upward arrows. (b) Values of $T_\text{eff} = 38.2$ Oe given by eq. (1), is comparable to the experimental value, with

$$S_{\text{eff}} = \pi x_m y_m$$

where x_m and y_m are one-half of the ellipse’s effective major and minor axes, respectively. This characteristic area depends on $\xi(T)$, because the order parameter has a finite extension $\xi(T)$ at the geometrical edge of the hole. The effective elliptical axis is similar to the mean radius r_m in the Little-Parks effect, where $r_m = (r_h + \Delta W/2)/2$ [11], r_h and r_i are the outer and inner loop radius.

In fig. 3, the hysteretic curves are recorded in the following way: the magnetic field first increases from -100 Oe to 750 Oe, then decreases from 750 Oe to -100 Oe. The curves are reversible in regions I and III. In region I, large antidot [9]. When the magnetic field is larger than a saturation field H_S, the $R(H)$ behavior changes drastically. The collective oscillations are interrupted by the formation of additional vortices in the intersitial regions, resulting in broad dips and missing of fine fractional structures. Similar phenomena have also been observed in rectangular arrays of magnetic dots, and explained by the reconfiguration transitions of vortex lattice [24,27].
since only coreless vortices are constraint inside the holes, increasing or decreasing magnetic field would produce the same magnetoresistance oscillation. In region II, at first, every hole encloses a multiquanta flux ($6\Phi_0$). There is a competition between increasing the flux per hole and accommodating vortices at interstitial positions in the wide stripes. The additional vortices are energetically favorable to appear in the weak superconducting regions. Furthermore, the interstitial vortices in the wide stripes can form stable sublattices, which produce dips in the $R(H)$ curves [25,26]. Then, a larger ΔH (34.9 Oe) illustrates the existence of a dense vortex distribution, in contrast to region I. This field interval is comparable with the theoretical expectation for the reconfiguration of the square lattice $\Delta H_{\text{Sq}} = \Phi_0/a^2 = 32.3\text{ Oe}$ [24,27], where $a = 800\text{ nm}$. Normally, the hysteretic effect implies the existence of a surface barrier or a surface pinning effect (flux trapped by random defects) for vortex motion [31,32]. To our samples, since the measured temperatures is close to T_c, the flux pinning force is quite weak and negligible. Thus, the hysteretic effect in region II may be caused by a surface barrier between the three regimes, related to a first-order transition. Indeed, for the multiquanta vortex (coreless vortices) to interstitial vortices, a surface barrier (ψ-barrier) for vortex entrance and exit will lead to a first-order phase transition [33], which could explain the hysteretic effect in magnetoresistance.

With increasing field, the vortex patterns become complex, and parts of the interstitial regions turn into normal state due to the penetration of the magnetic field. In region III, most of the regions in S1 turn to normal states, except that surface states around holes are still superconducting (see the inset of fig. 3). The curves become reversible again. A synchronized entrance of an additional vortex in each hole causes a resistance minimum in $R(H)$, like the Little-Parks effect [1].

From the hysteresis measurements, the boundaries of three regions can be clearly distinguished. The same conclusions can also be obtained from sample S2 ($a = 800\text{ nm}$, $b = 2000\text{ nm}$, $r_h = 373\text{ nm}$), with $H_S = 39\text{ Oe}$ and $H_D = 319\text{ Oe}$ at $T = 8.640\text{ K}$. In contrast to the work on magnetic dots [27], the hysteresis curves were measured just above or below the transition field, and then the divisions of the three regimes were possibly missed in their discussion.

Parameters affecting the crossover fields. Figure 4 shows the $R(f)$ curves of samples S1 and S2 measured at several temperatures, with $I = 30\mu\text{A}$ (panel (a)) and $200\mu\text{A}$ (panel (b)), respectively. Since these two samples show a very similar temperature dependence of the $R(f)$ curves, we focus our discussion on S1. In fig. 4(a), from top to bottom, the temperature decreases from 8.723 K to 8.540 K (some curves are not shown in the figure). In the network-like region of the $R(f)$ curves, integer dips are always visible at these temperatures. Even some dips at fields ($f = \frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$) are well developed when the temperature is lower than 8.680 K. However, the magnetoresistance oscillations in the intermediate region and single-loop-like region are very sensitive to temperature variation. At high temperatures close to T_c ($T > 8.680\text{ K}$), the oscillations in these two regions are broad and shallow. With decreasing temperature, the oscillations become more pronounced. As the temperature further decreases ($T < 8.540\text{ K}$, not shown), the oscillations become weaker and finally disappear. This illustrates the different oscillation nature in these three regions.

The saturation number N_S is defined by the largest possible number of the flux quanta trapped by an antidot. Mkrtchyan and Shmidt [34] had theoretically estimated the maximum possible number of vortices trapped by a single insulating inclusion with an expression of $N_S(t) = r_h/2\xi(t)$.

In our case, larger hole and smaller separation of antidots along the X-direction are both used, where the surface superconductivity is more significant and produces effective constraint to the flux [9,10]. As indicated by the arrow in fig. 4(a), $N_S = 6$ at $T = 8.615\text{ K}$. It is larger than the theoretical value $N_S(t = 0.99, r_h = 375\text{ nm}) \sim 2$.\[37006-p4]
In fig. 5(a), values of N_s as a function of temperature for these two samples are compared with $N_{S1}(t)$. As the temperature decreases, N_s increases stepwise. Interestingly, the experimental result for S2 is closer to the theoretical value at low temperature ($N_s \approx 3$, at $t = 0.978$). This is due to the fact that the distributions of antidots in S2 are sparser along the Y-direction (or have a larger aspect ratio b/a). In contrast, N_s for S1 is nearly 2–3 times that of S2 at the same reduced temperature. This also gives the greatest difference between S1 and S2. Normally, in an array of antidots, the antidot-vortex interaction strongly affects N_s, resulting in a larger saturation number in the dense array [35-36]. Besides, the hole size [18-19], and magnetic field [18] are also influencing N_s. Therefore, the transition between region I and II is mainly determined by the saturation number N_s, which is temperature, geometry, and magnetic field dependent.

In fig. 5(b), we plotted another crossover field H_D vs. the reduced temperature t, and obtained a linear dependence $H_D(t)$. It is found that $H_D(t)$ nearly coincides with the experimental $H_{c2}(t)$ for the Nb thin film. Using eq. (2), we can roughly estimate the upper critical field for the Nb thin film. The theoretical value $H_{c2}^T(T/T_\alpha = 0.986) = 361$ Oe is close to the value of $H_D = 352$ Oe at $T = 8.640$ K, where $T_\alpha = 8.763$ K is obtained from a linear extrapolation of $H_D(t)$ to zero field. This suggests that H_D can be identified as H_{c2} of sample S1. The enhanced H_{c2} is also near the value of 1.695 H_{c2} [7], where H_{c2}^T is 90% R_α for the $R(H)$ curves in fig. 4(a). The region between H_{c3} and H_{c2} is the region where the bulk sample is already in the normal state and only a surface state persists. When the temperature is below 8.640 K in fig. 4(a), we notice a decrease of the resistance maxima in a wide range of the magnetic field. This abnormal effect is related to the surface superconductivity around hole edges and it reaches its maximum near H_{c2} (corresponding to H_D) [37]. As the surface states merge with wide stripes containing a finite value of the order parameter, the whole array re-enters into the superconducting state. This has been found in $T = 8.540$ K for S2 (not shown in the figure).

By comparing the $R(H)$ curves of S1 with those of S2, we can study the influence of the geometry (aspect ratio) on the magnetoresistance oscillation. However, there is no much difference in the position of the fine structures in the low-field regime or the position of dips in the high-field regime, except the difference in H_S and H_D. This implies that the oscillations in the $R(H)$ curves are mainly influenced by the connectivity and the upper critical fields of the arrays.

Discussion. To further confirm our observations, samples with smaller unit cells are fabricated to obtain a larger ΔH in $R(H)$ curves. The results for sample D1 (400×960, $r_h = 170$ nm) are illustrated in fig. 5(c). In the range of 272 Oe $< H < 402$ Oe, values of ΔH agree with the period of square lattice $\Delta H_{S2} = \Phi_0/a^2 = 129.4$ Oe, where $a = 400$ nm. When $H > 405$ Oe, ΔH is equal to 143.6 Oe, which is close to the calculated value $\Delta H_{SLL} = 145.5$ Oe for the single-loop-like oscillations, with an area of the ellipse $S_{eff} = \pi \times 200$ nm $\times 226.5$ nm. Similar results are also obtained in other samples (e.g., 400×655, 400×800 and 400×1000).

Finally, we compare our results with previous works. Firstly, in contrast to the square arrays of antidots, an extra transition (interstitial vortex state) between collective oscillations and single-loop-like oscillations is found at the saturation field H_S. At higher fields, it indicates that the crossover from the interstitial vortex state to the single-loop-like state is triggered by the upper critical field of the sample. Our experiments offer an indirect way to study the process of magnetic field penetration. Moreover, in the analysis of the vortex confinement effect for the large antidots near H_{c2}, it is important to take into account the strong non-uniformity of the order parameters.

Secondly, changes in the periodicity and the shape of the dips in magnetoresistance have been found in superconductors with magnetic dots, nonmagnetic dots and antidots [24-27]. The dominant mechanisms discussed in these works are analyzed in terms of two possible models: the reconfiguration model and the multivortex model. Following these pictures, our results require that vortices form a denser state in the high-field region. However, there are difficulties with the explanation of the phenomena, such as the periodic appearances of the fine structures in region I, the non-hysteretic effects in region III and the very large field intervals (40 Oe $> \Delta H_{S1}$, for S1) at fields higher than the upper critical field. On the other hand, from the viewpoint of the dynamics of the vortex lattice ordering [38], a monotonic increase in the intervals with increasing magnetic field is
supposed to occur. However, this has not been found in our work. Thus, it seems to be inappropriate to use the London limit at such high temperatures and magnetic fields. We can discuss the results in the framework of the Ginzburg-Landau theory by considering the order parameter modulation. To clarify these effects, further direct imaging experiments, transport measurements and theoretical simulations in such arrays are necessary.

Conclusion. — In conclusion, we have investigated the magnetoresistance of superconducting Nb thin films containing rectangular arrays of large antidots. The $R(H)$ curve is divided into three regions by comparing the results with hysteresis measurements. At low magnetic fields, the system behaves like a weak-link wire network, giving rise to dips in $R(H)$ at integral and fractional reduced magnetic flux below the saturation field H_s. At the intermediate fields, the interstitial vortices form sublattices, leading to larger magnetic field intervals and a hysteretic effect in the $R(H)$ curves. As soon as the magnetic field exceeds H_{c2}, the surface superconductivity nucleates near the edge of the antidot, resulting in a single-loop–like superconducting state. In this state, the non-periodic oscillations and a fully reversible behavior are found in the $R(H)$ curves. The crossover fields (H_s and H_{c2}) among the three regions are found to be geometry and temperature dependent. These observations suggest that the order parameters of the nanostructured superconductors are greatly modulated, especially at the temperature or magnetic field near the critical value.

We thank Q. Niu, X. C. Xie, and F. Nori for fruitful discussions. WJZ gratefully acknowledges the help of microfabrication Lab and thanks S. K. Su of group EX2 in IOP, CAS. This work is supported by National Basic Research Program of China (No. 2009CB929102, 2011CBA00107, 2012CB921302) and National Science Foundation of China (Nos. 10974241, 91121004, 11104335). The work in the KU Leuven is supported by the Methusalem Funding by the Flemish Government.

REFERENCES