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Abstract – Superconducting Nb thin films with rectangular arrays of submicron antidots (holes)
have been systemically investigated by transport measurements. A series of crossover behaviors is
found in magnetoresistance oscillations, corresponding to three different superconducting states:
the wire network-like state, the interstitial vortex state and the single-loop–like state. These
states are identified by the field intervals and hysteretic effect. The crossover fields between
them are found to be both temperature and geometry dependent. Furthermore, in dense arrays,
the saturation number is distinctly larger than the theoretical calculation for a single insulating
inclusion. Our results indicate that in the process of magnetic field penetration into nanostructured
superconductors, the order parameters are strongly modulated and finally localized near the edges,
resulting in changes of oscillation modes.

Copyright c© EPLA, 2012

Introduction. – Experiments on nanostructured
superconductors with dimensions comparable to the
superconducting characteristic length scales have demon-
strated that the sample topology strongly influences the
superconducting properties, such as the phase boundary
Tc(H), the magnetoresistance R(H), and the field-
dependent critical current Ic(H) [1–3]. Various topologies
(single loops [1,3], large infinite networks [4], and arrays
of antidots [5,6]) have been studied both experimentally
and theoretically.
In a perpendicular magnetic field, a localized super-

conducting state can first nucleate near the edge of the
samples within a thin layer of width Ws ∼ξ(T ), similar
to the nucleation of surface superconductivity [7,8]. The
so-called edge superconducting state (surface state) [9,10]
has an enhanced critical field Hc3(T ). The enhancement
of Hc3(T ) above the bulk critical field Hc2(T ) greatly
depends on the curvature of the superconducting/normal
interface and the surface-to-volume ratio [5,11]. Much
higher enhancement of the ratio Hc3/Hc2 up to 3.6 has

(a)E-mail: zhangweijun@ssc.iphy.ac.cn
(b)E-mail: xgqiu@iphy.ac.cn

been observed in Pb thin film with a dense square antidot
lattice [11].
For the square arrays of antidots, when the narrowest

separation ∆W between neighboring holes is smaller than
a critical value 1.84ξ(T ) [7], nucleation is dominated by
the thin wire-like surface states and by the coupling
between them. This kind of arrays is well described by the
formalism of superconducting wire networks [12,13]. The
oscillations of Tc(H) or R(H) in such array are known as
collective oscillations or network-like oscillations, whose
period is corresponding to the area of the unit cell [4].
As shown by Bezryadin and Pannetier [5], when the
magnetic field is high enough, a crossover behavior in the
Tc(H) curve from collective oscillations to single-loop–like
(“single object”) oscillations occurs. The period of the
single-loop–like oscillations is determined by the effective
area Seff of screening supercurrents,

Φ0 =∆HSeff , (1)

where Φ0 = h/2e= 20.7Gµm
2 is the flux quantum; ∆H

is the period (field interval) of oscillations. Due to the
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decrease of Ws with increasing magnetic field, the single-
loop–like oscillations are non-periodic.
In perforated samples, Abrikosov (interstitial) vortices

can appear in the large superconducting segments between
the holes, which have been confirmed by imaging tech-
niques [9,10,14,15]. For rectangular arrays of antidots, the
interstitial vortices are preferred to reside in wide stripes
along the long side when the magnetic field is high enough.
Thus, an extra interstitial vortex crossover behavior will
be involved in rectangular arrays, in contrast to the one
found in the square arrays of antidots [5,6,9].
In this paper, we have performed detailed systematic

transport measurements on the rectangular arrays of anti-
dots with various aspect ratios. These array are char-
acterized by the following features: 1) separation ∆W
(∼ 50 nm) of the short side a is smaller than ξ(T ); 2) ∆W
of the long side b is larger than 4ξ(T ). We observe succes-
sive crossover behaviors from the network-like state to the
interstitial vortex state, then to the single-loop–like state,
as the magnetic field increases. The hysteretic effect is
found for the interstitial vortex state. The crossover fields
are strongly dependent on temperature, hole size, and the
aspect ratio of the unit cell.

Experiments. – Nb thin films with a thickness
of about 100 nm were deposited on SiO2(300 nm)/Si
substrates by magnetron sputtering. The critical temper-
ature Tc of the Nb films is 8.910K, and the supercon-
ducting transition width is about 21mK (10%–90%Rn
criterion, where Rn is the normal state resistance at 9K).
For standard transport measurements, four-probe micro-
bridges were fabricated on the Nb films with ultraviolet
photolithography and etched by reactive ion etching
(RIE) in O2 and SF6 plasmas. The patterned Nb films
were then spun with polymethyl metacrylate (PMMA)
resist layer and baked at 170 ◦C for 1 minute. Arrays
of circular antidots were written in the central regions
(60µm× 60µm) of the Nb microbridges by electron beam
lithography on PMMA resist. The exposed Nb films were
developed in MIBK : IPA (1 : 3) solution for 40 seconds.
Finally, the samples were etched by RIE again and
unexposed PMMA was removed in acetone. Note that
one of the Nb microbridges was intentionally unexposed
and used as a reference.
Figure 1 shows scanning electron microscope (SEM) and

atomic force microscope (AFM) images for sample S1,
with a rectangular unit cell of 800 nm× 1200 nm, and a
hole radius rh = 375 nm. The narrowest separation ∆W
between neighboring holes along the X-direction is 50 nm.
The images show that the overall periodicity is maintained
very well. Sharp edges are obtained after etching.
The measurements were performed in Physical Prop-

erties Measurement System (PPMS-14, Quantum Design
Inc.). Phase lock-in amplifiers (SR830) were used for ac
currents applied at a frequency of 30.9Hz. The current
was parallel to the long side of the rectangular unit
cell (the Y -direction). The applied magnetic field was
perpendicular to the film surface. We swept the magnetic

Fig. 1: (Color online) SEM and AFM images of a rectangular
antidot lattice (sample S1), with a unit cell of a ×b (800 nm×
1200 nm). The hole (antidot) radius is 375 nm and the distance
between the centers of the holes is 800 nm, resulting in a width
∆W of the narrowest part of the constriction of 50 nm. The
dashed rectangle indicates a unit cell.

field with a step of 0.4Oe in the low-field regime and 1Oe
in the high-field regime. The temperature stability was
better than 2mK during the measurements. The super-
conducting coherence length ξ(0) is 11.3 nm, and is deter-
mined by measuring the Tc(H) of the reference Nb micro-
bridge [16]:

Hc2 =
Φ0

2πξ2(0)

(
1− T

Tc

)
. (2)

The penetration depth λ(0) is 72.0 nm, derived
from the dirty limit (l < ξ0) expressions [17]:
λ(0) = 0.85× 0.64λLξ0/ξ(0), where ξ0 = 38nm is the
BCS coherence length, and λL = 39nm is the London
penetration depth. Thus, we have ξ(t= 0.990) = 113 nm,
λeff (t= 0.990)≈ λ2(t)/d= 1315.6 nm, where t= T/Tc is
the reduced temperature, and d= 100 nm is the thickness
of thin film.

Results and discussion. –

Magnetoresistance and hysteretic effect. The field-
dependent R(H) curve for S1 (800× 1200, rh = 375 nm)
at T = 8.640K and current I = 30µA is given in fig. 2(a).
The Tc of S1 is 8.702K (50%Rn criterion).
Due to the well-defined shape of the dips, we could

accurately determine the field intervals ∆H between two
consecutive dips (minima). Figure 2(b) shows ∆H as
a function of the index number N for S1, at the same
temperature T = 8.640K. The notation N is a sequence
number of dips relative to the one at zero field, which is
marked as N = 0. The horizontal dashed lines (bottom to
top) indicate the average field intervals ∆H in region I,
II and III: 20.8± 0.5Oe, 34.9± 1Oe, and 38.1± 1 Oe.
Thus, three different regimes of the R(H) curve can
be distinguished by ∆H: the low-field (region I),
the intermediate-field (region II), and the high-field
(region III) regimes. It is found that ∆H in the three
regions increases with the field. In fig. 2(a), the cross-
over fields are indicated by the downward arrows at
HS = 125Oe and HD = 352Oe. It should be noted that,
∆H at N = 7 has a value close to the ones in region I, but
it belongs to region II. It is related to the formation of
the first interstitial vortex in the center of each unit cell.
In the low-field regime (H <HS), ∆H = 20.8± 0.5Oe

is relevant to one flux quantum per unit cell. It slightly
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Fig. 2: (Color online) (a) Magnetoresistance of S1 is measured
at T = 8.640K (t= 0.993) with I = 30µA. The dashed vertical
lines divide the R(H) curve into three regions. The downward
arrows indicate the crossover fields HS and HD. Inset of
(a): enlarged plot of the low-field regime. Fractional reduced
magnetic fluxes are indicated with upward arrows. (b) Values
of the field interval ∆H as a function of the index number N .
The dashed horizontal lines indicate the average values of
∆H, corresponding to the three regions in the upper panel:
(I) 20.8Oe, (II) 34.9Oe, and (III) 38.1Oe.

deviates from the theoretical value Φ0/ab= 21.6Oe. The
samples can be described in the framework of the rectan-
gular weak-link wire network, since the separations of
neighboring holes is comparable to ξ(T ∼ Tc) [4,18–21].
The inset of fig. 2(a) shows a magnification of the low-
field R(H) curve. The fractional reduced magnetic flux
f =Φ/Φ0 = (

1
4 ,

1
2 ,

3
4 ) is clearly visible. These features

reflect the collective behavior of multiconnected super-
conducting wire network. A numerical study [22], based
on the mean-field Ginzburg-Landau theory for the rectan-
gular wire network, predicts several fractional f = (14 ,

1
3 ,

1
2 , . . .), which is in a good agreement with our results.
Thus, multiconnectivity plays an important role in arrays
of large antidots. The description of network-like behav-
ior is different from the arrays with smaller and weaker
pinning centers. In the latter case, the observed oscil-
latory dips in the magnetoresistance were explained by
the vortex (multiquanta-vortex) matching model in the
London limit [23–28].
The maxima of magnetoresistance show approximately

the same magnitude in the low-field regime, suggesting
that the multiquanta vortex is effectively confined in each

Fig. 3: (Color online) Hysteretic effect of the magnetoresistance
for S1. The curves are divided into three parts: (I) H <HS ,
network-like region, no vortices are located outside the holes;
(II) HS <H <HD, the interstitial vortex sublattice appears in
the wide stripes, with a normal core size ∼ 2ξ(T ); (III) H >
HD, the surface state is localized around each hole, forming an
elliptical annulus. The insets show schematic drawings of the
vortex patterns for each region. The blue disks, the gray spots
and the gray regions represent holes, the normal cores of the
vortices and normal-state regions, respectively.

large antidot [9]. When the magnetic field is larger than
a saturation field HS , the R(H) behavior changes dras-
tically. The collective oscillations are interrupted by the
formation of additional vortices in the interstitial regions,
resulting in broad dips and missing of fine fractional
structures. Similar phenomena have also been observed
in rectangular arrays of magnetic dots, and explained by
the reconfiguration transitions of vortex lattice [24,27].
In the high-field regime (H >HD), a rapid increase

of resistance background and a larger ∆H = 38.1 Oe is
observed. As we will discuss below, the large period oscil-
lations in region III correspond to the single-loop–like
behavior. Due to the small separation of neighboring anti-
dots, the screening supercurrents are strongly distorted
and redistributed to an elliptical shape [29,30]. Thus,
∆HSLL = Φ0/Seff = 38.2Oe given by eq. (1), is compa-
rable to the experimental value, with

Seff = πxmym
(3)

= π(rh+∆W/2)(rh+ ξ(t)/2),

where rh = 375 nm ∆W = 50nm and ξ(t= 0.99) = 113 nm.
Note that xm and ym are one-half of the ellipse’s effective
major and minor axes, respectively. This characteristic
area depends on ξ(T ), because the order parameter has
a finite extension ξ(T ) at the geometrical edge of the hole.
The effective elliptical axis is similar to the mean radius
rm in the Little-Parks effect, where rm = (ro+ ri)/2 [11],
ro and ri are the outer and inner loop radius.
In fig. 3, the hysteretic curves are recorded in the follow-

ing way: the magnetic field first increases from −100Oe
to 750Oe, then decreases from 750Oe to −100Oe. The
curves are reversible in regions I and III. In region I,
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since only coreless vortices are constraint inside the holes,
increasing or decreasing magnetic filed would produce
the same magnetoresistance oscillation. In region II, at
first, every hole encloses a multiquanta flux (6Φ0). There
is a competition between increasing the flux per hole
and accommodating vortices at interstitial positions in
the wide stripes. The additional vortices are energetically
favorable to appear in the weak superconducting regions.
Furthermore, the interstitial vortices in the wide stripes
can form stable sublattices, which produce dips in the
R(H) curves [25,26]. Then, a larger ∆H (34.9Oe) illus-
trates the existence of a dense vortex distribution, in
contrast to region I. This field interval is comparable with
the theoretical expectation for the reconfiguration of the
square lattice ∆HSq =Φ0/a

2 = 32.3Oe [24,27], where a=
800 nm. Normally, the hysteretic effect implies the exis-
tence of a surface barrier or a surface pinning effect (flux
trapped by random defects) for vortex motion [31,32]. To
our samples, since the measured temperatures is close to
Tc, the flux pinning force is quite weak and negligible.
Thus, the hysteretic effect in region II may be caused by
a surface barrier between the three regimes, related to a
first-order transition. Indeed, for the multiquanta vortex
(coreless vortices) to interstitial vortices, a surface barrier
(ψ-barrier) for vortex entrance and exit will lead to a
first-order phase transition [33], which could explain the
hysteretic effect in magnetoresistance.
With increasing field, the vortex patterns become

complex, and parts of the interstitial regions turn into
normal state due to the penetration of the magnetic
field. In region III, most of the regions in S1 turn to
normal states, except that surface states around holes
are still superconducting (see the inset of fig. 3). The
curves become reversible again. A synchronized entrance
of an additional vortex in each hole causes a resistance
minimum in R(H), like the Little-Parks effect [1].
From the hysteresis measurements, the boundaries of

three regions can be clearly distinguished. The same
conclusions can also be obtained from sample S2 (a=
800 nm, b= 2000 nm, rh = 373 nm), with HS = 39Oe and
HD = 319Oe at T = 8.640K. In contrast to the work on
magnetic dots [27], the hysteresis curves were measured
just above or below the transition field, and then the
divisions of the three regimes were possibly missed in their
discussion.

Parameters affecting the crossover fields. Figure 4
shows the R(f) curves of samples S1 and S2 measured
at several temperatures, with I = 30 µA (panel (a)) and
200 µA (panel (b)), respectively. Since these two samples
show a very similar temperature dependence of the R(f)
curves, we focus our discussion on S1. In fig. 4(a), from
top to bottom, the temperature decreases from 8.723K
to 8.540K (some curves are not shown in the figure). In
the network-like region of the R(f) curves, integer dips
are always visible at these temperatures. Even some dips
at fields (f = 14 ,

1
3 ,

1
2 ) are well developed when the

temperature is lower than 8.680K. However, the

Fig. 4: (Color online) Resistance as a function of reduced
magnetic flux f for S1 (upper panel (a)) and S2 (lower panel
(b)), measured at several temperatures with fixed currents
I = 30µA and 200µA, respectively. From top to bottom,
the corresponding temperatures of R(f) curves are 8.723K,
8.702K, 8.680K, 8.615K and 8.540K (some curves are not
shown in the figures).

magnetoresistance oscillations in the intermediate
region and single-loop–like region are very sensitive to
temperature variation. At high temperatures close to Tc
(T > 8.680K), the oscillations in these two regions are
broad and shallow. With decreasing temperature, the
oscillations become more pronounced. As the temper-
ature further decreases (T < 8.540K, not shown), the
oscillations become weaker and finally disappear. This
illustrates the different oscillation nature in these three
regions.
The saturation number NS is defined by the largest

possible number of the flux quanta trapped by an antidot.
Mkrtchyan and Shmidt [34] had theoretically estimated
the maximum possible number of vortices trapped by a
single insulating inclusion with an expression of NSt(t) =
rh/2ξ(t).
In our case, larger hole and smaller separation of anti-

dots along the X-direction are both used, where the
surface superconductivity is more significant and produces
effective constraint to the flux [9,10]. As indicated by
the arrow in fig. 4(a), NS = 6 at T = 8.615K. It is larger
than the theoretical value NSt(t= 0.99, rh = 375 nm) ∼ 2.

37006-p4



Crossover behaviors in magnetoresistance oscillations

Fig. 5: (Color online) (a) Temperature dependence of the
saturation numbers NS for sample S1 and S2, contrasted with
the theoretical values NSt(t) = rh/2ξ(t). (b) Phase boundary
for arrays of antidots and a reference Nb thin film. Hc3 is
calculated with 1.695Hc2, where Hc2 is the experimental data
for the Nb thin film. H∗c3 is the experimental data obtained
from the 90%Rn criterion in fig. 4(a). (c) The R(H) curve for
the sample D1 with a rectangular array of antidots (400 nm×
960 nm) is measured at t= 0.983 with I = 50µA.

In fig. 5(a), values of NS as a function of temperature
for these two samples are compared with NSt(t). As the
temperature decreases, NS increases stepwisely. Interest-
ingly, the experimental result for S2 is closer to the theo-
retical value at low temperature (NS ≈ 3, at t= 0.978).
This is due to the fact that the distributions of antidots
in S2 are sparser along the Y -direction (or have a larger
aspect ratio b/a). In contrast,NS for S1 is nearly 2–3 times
of that for S2 at the same reduced temperature. This also
the greatest difference between S1 and S2. Normally, in an
array of antidots, the antidot-vortex interaction strongly
affects NS , resulting in a larger saturation number in the
dense array [35,36]. Besides, the hole size [18,19], and
magnetic field [18] are also influencing NS . Therefore, the
transition between region I and II is mainly determined by
the saturation number NS , which is temperature, geome-
try and magnetic field dependent.
In fig. 5(b), we plotted another crossover fieldHD vs. the

reduced temperature t, and obtained a linear temperature
dependence HD(t). It is found that HD(t) nearly coincides
with the experimental Hc2(t) for the Nb thin film. Using
eq. (2), we can roughly estimate the upper critical field
for the Nb thin film. The theoretical value H∗c2(T/Tc0 =
0.986) = 361 Oe is close to the value of HD = 352 Oe at T
= 8.640K, where Tc0 = 8.763K is obtained from a linear
extrapolation ofHD(t) to zero field. This suggests thatHD
can be identified as Hc2 of sample S1. The enhanced H

∗
c3

is also near the value of 1.695Hc2 [7], where H
∗
c3 is 90%Rn

for the R(H) curves in fig. 4(a). The region between Hc3
and Hc2 is the region where the bulk sample is already in
the normal state and only a surface state persists. When
the temperature is below 8.640K in fig. 4(a), we notice

a decrease of the resistance maxima in a wide range of
the magnetic field. This abnormal effect is related to the
surface superconductivity around hole edges and it reaches
its maximum near Hc2 (corresponding to HD) [37]. As the
surface states merge with wide stripes containing a finite
value of the order parameter, the whole array re-enters
into the superconducting state. This has been found in
T = 8.540K for S2 (not shown in the figure).
By comparing the R(H) curves of S1 with those of S2,

we can study the influence of the geometry (aspect ratio)
on the magnetoresistance oscillation. However, there is no
much difference in the position of the fine structures in
the low-field regime or the position of dips in the high-
field regime, except the difference in HS and HD. This
implies that the oscillations in the R(H) curves are mainly
influenced by the connectivity and the upper critical fields
of the arrays.

Discussion. To further confirm our observations,
samples with smaller unit cells are fabricated to obtain
a larger ∆H in R(H) curves. The results for sample D1
(400× 960, rh = 170 nm) are illustrated in fig. 5(c). In
the range of 272Oe <H < 402Oe, values of ∆H agree
with the period of square lattice ∆HSq= Φ0/a

2 = 129.4
Oe, where a= 400 nm. When H > 405Oe, ∆H is equal to
143.6Oe, which is close to the calculated value ∆HSLL =
145.5Oe for the single-loop–like oscillations, with an area
of the ellipse Seff = π× 200 nm× 226.5 nm. Similar results
are also obtained in other samples (e.g., 400× 655, 400×
800 and 400× 1000).
Finally, we compare our results with previous works.

Firstly, in contrast to the square arrays of antidots, an
extra transition (interstitial vortex state) between collec-
tive oscillations and single-loop–like oscillations is found
at the saturation field HS . At higher fields, it indicates
that the crossover from the interstitial vortex state to the
single-loop–like state is triggered by the upper critical field
of the sample. Our experiments offer an indirect way to
study the process of magnetic field penetration. Moreover,
in the analysis of the vortex confinement effect for the large
antidots near Hc2, it is important to take into account the
strong non-uniformity of the order parameters.
Secondly, changes in the periodicity and the shape

of the dips in magnetoresistance have been found in
superconductors with magnetic dots, nonmagnetic dots
and antidots [24,27]. The dominant mechanisms discussed
in those works are analyzed in terms of two possible
models: the reconfiguration model and the multivortex
model. Following these pictures, our results require that
vortices form a denser state in the high-field region.
However, there are difficulties with the explanation of
the phenomena, such as the periodic appearances of the
fine structures in region I, the non-hysteretic effects in
region III and the very large field intervals (40 Oe >
∆HSq, for S1) at fields higher than the upper critical
field. On the other hand, from the viewpoint of the
dynamics of the vortex lattice ordering [38], a monotonic
increase in the intervals with increasing magnetic field is
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supposed to occur. However, this has not been found in
our work. Thus, it seems to be inappropriate to use the
London limit at such high temperatures and magnetic
fields. We can discuss the results in the framework of
the Ginzburg-Landau theory by considering the order
parameter modulation. To clarify these effects, further
direct imaging experiments, transport measurements and
theoretical simulations in such arrays are necessary.

Conclusion. – In conclusion, we have investigated
the magnetoresistance of superconducting Nb thin films
containing rectangular arrays of large antidots. The R(H)
curve is divided into three regions by comparing the
results with hysteresis measurements. At low magnetic
fields, the system behaves like a weak-link wire network,
giving rise to dips in R(H) at integral and fractional
reduced magnetic flux below the saturation field HS .
At the intermediate fields, the interstitial vortices form
sublattices, leading to larger magnetic field intervals and
a hysteretic effect in the R(H) curves. As soon as the
magnetic field exceeds Hc2, the surface superconductivity
nucleates near the edge of the antidot, resulting in a
single-loop–like superconducting state. In this state, the
non-periodic oscillations and a fully reversible behavior
are found in the R(H) curves. The crossover fields (HS
and Hc2) among the three regions are found to be
geometry and temperature dependent. These observations
suggest that the order parameters of the nanostructured
superconductors are greatly modulated, especially at the
temperature or magnetic field near the critical value.
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